

Large Numbers

Get Started

1. Greatest 7-digit number = 9999999

TL	L	TTH	TH	Η	Т	0
9	9	9	9	9	9	9

2. Number of students appeared in first year = 90,000

Number of students appeared second = 83,000

Number of students appeared third = 52,000

- Total number of students appeared = Number of students in (First year + Second year + Third year)
 - = 90,000 + 83000 + 52000
 - = 2, 25, 000 students

Hence, 225000 students appeared in exams.

Exercise 1.1

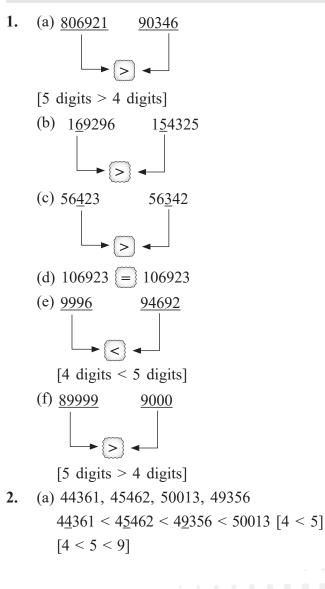
1.

1

	С	TL	L	TTH	TH	Η	Τ	0
(a)		1	0	3	8	9	6	2
(b)	5	7	9	2	8	0	4	4
(c)	6	8	3	2	6	4	3	1

- **2.** (a) 6,34,949
 - (b) 40,30,689
 - (c) 5,66,24,407
 - (d) 4,00,73,016
- (a) 99,93,428 = Ninety nine lakh ninety three thousand four hundred twenty eight
 - (b) 54,26,569 = Fifty four lakh twenty six thousand five hundred sixty nine.
 - (c) 3,92,56,872 = Three crore ninety two lakh fifty six thousand eight hundred seventy two.
 - (d) 8,76,54,321 = Eight crore seventy six lakh fifty four thousand three hundred twenty one.
 - Mathematics-5

2


(e) 32,68,92,763 = Thirty two crore sixty eight lakh ninety two thousand seven hundred sixty three.

				-			•			
				E	xercis	e 1	.2			
1.	(a)	T	'TH	TH	H]	Г	0		
			8	8	2		5	6		
							→ :	5 × 1	10	
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
$() \frac{1111}{8} \frac{11}{111} \frac{1}{11} \frac{1}{1} \frac{1}{2} \frac{1}{0} \\ \hline 8 & 8 & 2 & 5 & 6 \\ \hline & 5 \times 10 \\ = 50 \\ (b) \\ \hline \hline C & TL & L & TTH & TH & H & T & 0 \\ \hline 9 & 0 & 0 & 4 & 2 & 0 & 0 & 3 \\ \hline & 0 \times 100 \\ = 0000 \\ (c) \\ \hline \hline TC & C & TL & L & TTH & TH & H & T & 0 \\ \hline 9 & 8 & 8 & 7 & 7 & 7 & 2 & 3 \\ \hline & 9 \times 10000000 \\ = 900000000 \\ (d) & \hline L & TTH & TH & H & T & 0 \\ \hline 8 & 2 & 4 & 5 & 9 & 6 \\ \hline & 2 \times 10000 \\ = 20000 \\ (e) \\ \hline \hline TL & L & TTH & TH & H & T & 0 \\ \hline 7 & 3 & 9 & 6 & 4 & 0 & 0 \\ \hline & & 3 \times 1000 \\ = 300000 \\ 2. \\ \hline \hline & \hline Predecessor: & Succesor: \\ \hline Number - 1 & Number + 1 \\ (a) & 3684502 - 1 & 3684502 + 1 \\ = 3684501 & = 3684503 \\ \hline \end{array}$						0				
	(c) $TC C T$ $9 \times = 9$ (c)		0	0	4		2	0	0	3
									•0 ×	1000
	(c))								
]			TL	L	TTI	I	TH	H	T	0
	9	8	8	7	7	Т	7	2	3	1
	T.	. 0	v 10							
	(đ					TT	T			
					I		!			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
	(e)	`			- 20	000				
	(с) Г		T	TT	пт	rr I	TT	Т		1
				-	_		_			
	L	/					т	0		l
)				
2			-	= 300	000					
2.			Dr	odoco	ssor.		Suc	00501	*•	1
		(a)	36	58450	2 – 1		3684	502 -	+ 1	
			=	= 3684	501		= 36	845()3	
		(b)								
				= 8095 60054			= 80 7600	952(541		
		(c)		2760			7000 = 270			
		L			- •					1

(d)	4598006 - 1	4598006 + 1
	=4598005	=4598007
(e)	670908032 - 1	670908032 + 1
	= 670908031	= 67090833

- 3. (a) 84856431 = 80000000 + 40000000 + 8000000 + 50000 + 6000 + 400 + 30 + 1
 - (b) 36000321 = 30000000 + 6000000 + 300 + 20 + 1
 - (c) 86010203 = 80000000 + 6000000 + 10000 + 200 + 3
- **4.** (a) 30066052
 - (b) 80074505
 - (c) 8069808

Exercise 1.3

- (b) 110032, 121369, 2126, 312
 <u>312</u> < 2126 < <u>1</u>10032 < 1<u>2</u>1369 [3 digits < 5 digits] [1 < 2]
- 3. (a) 696969, 690691, 70632, 87769
 69<u>6</u>969 > 69<u>0</u>691 > <u>8</u>7769 > <u>7</u>0632
 [6 digits > 5 digits] [6 > 0] [8 > 7]
 (b) 100691 > 12169, 132912, 66920
 - $1\underline{3}2912 > 1\underline{0}0691 > \underline{6}6920 > \underline{1}2169$ [6 digits > 5 digits] [3 > 0] [6 > 1]
- 4. (a) To form the greatest 7-digit number we must repeat the biggest digit and put the in descending order.

6 > 5 > 3 > 2 > 0 = 6665320

(b) To form the greatest 7-digit number we must repeat the biggest digit and put then in descending order.

5 > 4 > 3 > 2 = 5555432

(c) To form the greatest 7-digit number we must repeat the biggest digit and put then in descending order.

9 > 2 > 1 > 0 = 9999210

5. To form the smallest number we must put the digits in ascending order

0 < 1 < 2 < 3 < 4 < 5 = 102345 [0 at the left most has no value]

[To form the greatest number we must put the digits in desending order]

5 > 4 > 3 > 2 > 1 > 0 = 543210

6. To form the smallest number we must put the digits in ascending order

0 < 1 < 2 < 3 < 4 < 5 < 6 < 9 = 10234569 [0 at the left most has no value]

[To form the greatest number we must put the digits in descending order]

Answer Key

3

9 > 6 > 4 > 3 > 2 > 1 > 0 = 96543210

Exercise 1.4

1. (a) 48,029,104

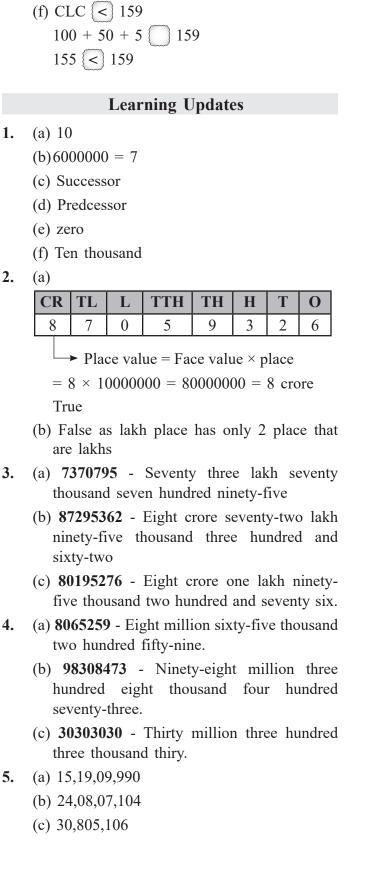
- (b) 95,345,000
- (c) 36, 206, <u>1</u>01
- **2.** (a) 7,698,7432
 - (b) 8,6007,349
 - (c) 30,104,699
- **3.** (a) 36,890,460: Thirty six million eight hundred ninety thousand four hundred sixty.
 - (b) 82,392,890: Eight two million three hundred ninety two thousand Eight hundred ninety.
 - (c) 2,070,082: Two million seventy thousand eighty two.
- 4. (a) 1 crore = 1,00,00,000 = 10 millions
 - (b) 1 lakh = 1,00,000 = 100 thousands
 - (c) 1 million = 1,000,000 = 1000 thousands
 - (d) 10 millions = 10,000,000 = 100 lakhs
- 5. 1 million = 1,000,000 = Thousands = Lakhs = Hundred ten thousands

Exercise 1.5

1. (a)
$$35 = 40$$

 $[5 = 5]$
(b) $447 = 450$
 $[7>5]$
(c) $956 = 960$
 $[6 > 5]$
(d) $335 = 340$
 $[5 > 5]$
(e) $6062 = 6060$
 $[2 < 5]$
(f) $9069 = 9070$
 $[9 > 5]$
(g) $78544 = 78540$

[2 < 5]2. (a) $5\underline{14} = 500$ [14 < 50](b) $6\underline{99} = 700$ [99 > 50](c) $4\underline{69} = 500$ [69 > 50](d) $5\underline{765} = 5800$ [65 > 50](e) $12\underline{96} = 1300$ [96 > 50](f) $234\underline{56} = 23500$ [56 > 50](g) $1000\underline{12} = 100000$ [12 < 50](h) $129\underline{69} = 13000$ [69 > 50](a) $7\underline{692} = 8000$ 3. [692 < 500](b) 6926 = 7000[926 < 500](c) $22\underline{239} = 22200$ [239 > 500](d) $335\underline{643} = 336000$ [643 < 500](e) 318932 = 319000[932 < 500] (f) 69296 = 69000[296 < 500]


(h) 48692 = 48690

- (g) $34\underline{456} = 34000$ [456 < 500]
- (h) 10369 = 10000[369 < 500]

Mathematics-5

 $\bullet \bullet \bullet \bullet$

4.	Total number of people in cricket stadium = 12950	
	Round off to nearest ten of people: $12956 =$ stadium = 12960 [56 < 50]	
	Hence number of seats required to accommodate then all is = 12960	1
	Exercise 1.6	
1.	(a) CCXXV	
	(b) CDXII	
	(c) DCCLXIX	
	(d) MCLX	
	(e) CCCXXXV	2
	(f) MMDCII	
2.	(a) $10 + 10 + 6 = 26$	
	(b) $50 + 10 + 10 + 2 = 72$	
	(c) $500 + 5 + 1 = 506$	
	(d) $1000 + (10 - 1) = 1000 + 9 = 1009$	
	(e) $100 + 50 + 5 + 1 + 1 = 157$	
	(f) MXXI = 1021	
3.	(a) CDVI < 416	2
	$(500 - 100) + 5 + 1 \bigcirc 416$	3
	406 < 416	
	(b) CCXCII > 385	
	$\frac{100 + 100 + 100 + (100 - 10) + 1 + 1}{385}$	
	= 300 + 90 + 2 385	
	= 392 > 385	4
	(c) CMXCII = 992	'
	$(1000 - 100) + (100 - 10) + 1 \bigcirc 992$	
	900 + 90 + 2 992	
	992 > 992	
	(d) DVI > 206	
	500 + 5 + 1 206	
	506 > 206	5
	(e) CCCLXXXVIII = 388	
	100 + 100 + 100 + 50 + 10 38 + 10 +	
	10 + 5 + 1 + 1	
	= 300 + 80 + 8 388	
	= 388 [=] 388	

Answer Key

6.	(a)								
	CR	TL	L	TTH	TH	H	T	0	
	7	0	1	8	6	5	4	9	
	(b)			$\times 10 =$		e valu	le × j	place	
	CR	TL	L	TTH	TH	H	T	0	
	8	2	9	6	3	5	7	0	
	= 2 × (c)	Place value = Face value \times place = 2 \times 10,00,000 = 20,00,000 (c) CR TL L TTH TH H T O							
	CR	TL	L	TTH	TH	H	T	0	
	9	8	3	7	8	0	1	6	
8.	(b) 7 (a) 63 62 57 62 (6 63 [6 (b) 23	$ \begin{array}{c} 0.09970\\ 0.09$	$ \begin{array}{c} & & & \\ & &$	7099 <u>0</u> 0] 290458 62790 572904: 627909 < 1], <u>6</u> 213500 46786	77 707 $562 < 58 < 6279$ $511 [5 - 527905]$ 527905 $514, 9$	91023 < 620 53780 < 9], 6 562 > 98765	0790 568 5279 <u>9</u> <u>5</u> 72 5, 8	931 <u>0</u> 931 90458 88625	
	21	13500	14 < 2	8765 < 2314992 digits <	25				

(a) 2637928, 10199230, 20547946, 10061650, 9. 15035810 20547946 < 15035810 < 10199230 <10061650 < 2637928[8 digits > 7 digits] (b) 12965783, 3076897, 26940354, 2789988, 21345603 26940354 < 21345603 < 12965783 <3076897 < 2789988[7 digits < 8 digits]**10.** (a) 3, 7, 8, 4, 0, 2: Ascending order = 0, 2, 4, 3, 7, 8 3, 7, 8, 4, 0, 2: Desending order = 8, 7, 3, 4, 2, 0 Smallest digit: 203478 [0 at ones place has no value] Greatest digits: 874320 (b) 8, 0, 5, 1, 3, 9, 4: Ascending order: 0, 1, 3, 4, 5, 8, 9 8, 0, 5, 1, 3, 9, 4: Descending order: 9, 8, 5, 4, 3, 1, 0 Smallest digit: 1034589 Greatest digit: 9854310 **11.** (a) 1023456

- (b) 9876543
- **12.** (a) 1000002
 - (b) 99999987
- 13.

	Rounded off to 10's	Rounded off to 10'0's	Rounded off to 100'0's
(a)	1609330	1609300	1609300
		[9 > 5]	[29 > 50]
(b)	4012890	4012900	401300
		[3 < 5]	[93 < 100]

- 14. (a) Ninety one million two hundred seventy six thousand one hundred fifteen
 - (b) Sixty one million ninety five thousand two hundred ninety seven.
 - (c) Six million eight hundred sixty four thousand six hundred two
 - (d) Two crores sixty seven lakh eight seven thousand nine hundred forty one.

Mathematics-5

15. (a) 31,743,368

- (b) 1,398,546
- (c) 33,106,071
- (d) 44,66,899

Multiple Choice Question

- 1. (a) ones place
- 2. (c) ten millions
- 3. (b) Period
- 4. (c) ten cores
- **5.** (a) 7
- **6.** (d) v
- 7. (50 + 10 + 10 + 10 + 5) + (50 + 10 + 10 + 5) + (50 + 10) + (50 10)= 85 + 75 + 60 + 40 = 260
 - **Answer:** (d) 260
- 8. CDI = (500 100) + 1 = 401Sucessor = 401 + 1 = 402 Answer: (a) 402
- 9. MXLV = 1000 + (50 10) + 5 = 1000 + 40 + 5 = 1045Prdecessor of 1045 = 1045 - 1 = 1044Answer: (d) 1044
- 10. 81 lakh = 800<u>000</u> = 800 thousandAnswer: (b) 800

Skills Check

Answer Key

- 1. (a) 100 times
- Greatest 3 digit number = 999
 Smallest 3 digits number = 100
 Difference between them = 999 100 = 899 = DCCXCIX
 Answer: (b) DCCXCIX

2

Fundamental Operations

Get Started

(i) Population of Shyam nagar = 28576
 Population of Ram nagar = 83768
 Numbers of people live in the two cities =
 Population of Shyam nagar + Population
 of Ram nagar

	1	1	1	1	
	2	8	5	7	6
+	8	3	7	6	8
1	1	2	3	4	4
=	285	76	+ 8	376	58

= 112344

Answer: 112344 people lives in the two cities.

(ii) Number of more people live in Ram Nagar than Shyam Nagar : Population of Ram Nagar – Population of Shyam Nagar

		7	(13)	6	16	
		8	Ż	7	ß	8
	_	2	8	5	7	6
		5	5	1	9	2
=	=	837	768	- 2	285	76
=	= 5	5519	92			

Answer: 55192 more people live in Ram Nagar than in Shyam Nagar

2. (a) Cost of skirt = ₹37575

Cost of t-shirt = ₹726.75 Cost of Pair of socks = ₹42.65 Total many Sheena spent = Cost of skirt + Cost of tshirt + Cost of socks = ₹375.75 + ₹726.75 + ₹42.65 = ₹1145.15 Answer: Sheena spent total ₹1145.15 (b) Money given to shopkeeper: ₹2000Money sheena will get back: Money given to shopkeeper - Totaol money sheena spent

= ₹2000 - ₹1145.15

= ₹854.85

Answer: Sheena will get back ₹854.85.

Exercise 2.1

1.	(a)	(]	D	1	1			1)			
		2	2	7	4	(9	2	7	7		
	+			3	7	8	8	5	e	5		
		3	3	1	2	,	7	8	3	3		
	(b)		1			1)	(1					
			2	e	5.	5	4	ł	5	2		
		+	2	8	3	7	6)	5	1		
			5	5	5	3	1		0	3		
	(c)		(1		D		(]		1)	(]	D	
				8	8	9	2	2	9	7	7	6
		+	3	(5	5	6	5	5	2	1	5
			4		5	4	9)	5	2	2	1
	(d)		(1		1)				1		D	
			7		9	8	()	0		3	7
		+		(6	5	2	2	9	8	3	6
			8		6	3	2	3	0	2	2	3
	(e)			2	1	Ċ	2)	1		D		
				2	8	(5	9	Ĩ	7	3	
				1	7		5	6		5	6	
		_	+	2	4	_	2	7		5	2	
		-		7	0	(5	3	()	1	_
	(f)		(1	1	(D	2	(])		
				8	7	5	5	0	3	3	2	
				3	3	()	6	8	3	2	
		-	ł	4	5	6	_	4	8	8	7	
		_	1	6	6	2	2	2	()	1	_

Mathematics-5

(b) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(b) $\frac{\begin{array}{ccccccccccccccccccccccccccccccccccc$	
(b) $\frac{\begin{array}{ccccccccccccccccccccccccccccccccccc$	
(b) 6 3 2 6 2 6	
6 3 9 9 6 9	
(c) (1) (1)	
4 4 3 4 4 8	
+ 6 7 2 4 8	
5 1 0 6 9 6	
(d) ① ① ①	
3 4 8 1 6 4	
+ 2 7 3 4 2 6	
6 2 1 5 9 0	
(e) 1 1 2 1 1	
3 4 3 6 4 9	
8 3 7 3 1	
+ 5969	
4 3 3 3 4 9	
(f) ① ① ① ① ①	
2 4 3 6 4	
4 3 2 4 0 3	
+ 8 4 8 3 6 4	
1 3 0 5 1 3 1	
3. (a) $5326 + 36458 = 36458 + 5$ (b) $226482 + 21264 = 21264$	5326

- (b) 236483 + 31364 = 31364 + 236483
- (c) $26436 + \underline{0} = 26436$
- (d) $\underline{100} + 362704 = 362704$
- (e) $149568 + \underline{1} = 149569$

4. (a) Bicycles sold in year 2020 = 65892Bicycle sold in year 2021 = 987379

	1	1	1	1	1		
		6	5	8	9	2	
+	9	8	7	3	7	9	
1	0	5	3	2	7	1	

Total bicycles sold in two years = Bicycles sold in year 2020 + Bicycles sold in year 2021

= 65892 + 987379

= 1053271

- **Answer:** 1053271 cycles were sold in these two years by the dealer.
- (b) Number of people visited cinema hall in May = 97932
 - Number of people visited cinema hall in June = 75307

Number of people visited cinema hall in July = 105975

Number of people visited cinema hall in these three months = sum of number of people visited cinema hall in may, June and July.

= 97932 + 75307 + 105975

		1	2	1	1	
		9	7	9	3	2
		7	5	3	0	7
+	1	0	5	9	7	5
	2	7	9	2	1	4

Answer: 279214 people visited cinema is May, June & July.

(c) Number of Hindi books = 787930

Number of Computer book = 39750

Number of Science = 82865

Total books in library = Number of Hindi books + Number of Science books + Number of Computer books .

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(c) 99999 0 10101010 789888 - 58364 041636 3. (a) 476436 - 239482 236954
Exercise 2.2 1. (a) 14 11 \otimes \mathscr{A} (4) 5 \mathscr{X} (1) \otimes \mathscr{A} (4) 5 \mathscr{X} (1) \otimes \mathscr{A} (4) 5 \mathscr{X} (1) \mathscr{B} \mathscr{A} (4) 5 \mathscr{X} (1) \mathscr{B} \mathscr{A} \mathscr{B} \mathscr{X} (1) \mathscr{B} \mathscr{B} \mathscr{B} \mathscr{A} \mathscr{B} \mathscr{A}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$(b) \frac{-96354}{858267}$ $(b) \frac{-96354}{858267}$ $(b) \frac{-96354}{603}$ $(c) \frac{-9635}{603}$	4. (a) $567384 - 0 = 567384$ (b) $24368 - 0 = 24368$ (c) $714326 - 714326 = 0$
$(c) \begin{array}{c c} \hline 1 & 2 & 0 & 6 & 2 & 6 \\ \hline 1 & 1 & 1 & 1 & 5 & 1 & 6 \\ \hline 2 & \chi & \chi & \chi & \chi & \chi & 5 & 6 & 1 & 0 \\ \hline \chi & 9 \end{array}$	(c) 714320 + 714320 + c $(d) 243646 - 243646 = 0$ 5. (a) 243647 + 2048 - 18364 = 227331 $(1) + (3)(15) + (2)(15)(15) + (2)(15)(15)(15)(15)(15)(15)(15)(15)(15)(15$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c } \hline + & 2 & 0 & 4 & 8 \\ \hline \hline 2 & 4 & 5 & 6 & 9 & 5 \\ \hline \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

(a) Sum of two number = 9569756. One of the number = 99950

		14				
	8	¥	16			
	ø	5	ø	9	7	5
_		9	9	9	5	0
	8	5	7	0	2	5

Other number =sum of two numbers - one of the number

- = 956975 99950
- = 857025

Answer: Other number is 857025

(b) Total votes candidate 'x' got = 769834Total votes candidate 'y' got = 637395768934 > 637395

Candidate 'x' votes > candidate 'y' votes Number of votes candidate x got than candidate y = Votes of candidate x - votesof candidate y

					12				
				8	Z	14			
	7	6	8	Ŋ	¥	¥			
_	6	3	7	3	9	5			
	1	3	1	5	3	9			
76	768934 - 637395								
=	131	539)						

- Candidate x got more votes than candidate y by 132439 votes.
- (c) Total bags of grain sold by the government = 850725

Total bags of grain purchased by the government = 408368

Total bags of grain left in the stock: Total boys purchase by the government - Total bags sold by the government

= 850725 - 408368

= 442357

Answer: 442357 bags were left in the stock.

(d) Sum of 88888 and 33333 = 88888 + 33333= 122221(1)(1)(1)(1)

	8	8	8	8	8	
+	3	3	3	3	3	
1	2	2	2	2	1	

Number 3676 less than sum of 88888 and 33333

= Sum of 88888 and 33333 - 3676 5 _

|--|--|

		(11)	(11)	(11)	
	1	X	X	X	(11)
1	Ľ	X	Ź	Ĺ	X
		3	6	7	6
1	1	8	5	4	5

Answer: 3676 less than sum of 88888 and 33333 is 118545.

> Answer Key 11

(c) ×			\sim								
×			3)(2)						
×			2	4	3	1					
				2	7	2					
	1	1	1	(1)							
			4	8	6	2					
	1	7	0	1	7	' ×					
+	4	8	6	2	×	: ×					
	6			_		2					
(a) $\frac{1}{5}$	7 ×	10	=	57()		_				
pi ni (c) 5 [V W	11 tv 11 tv 10 090 10 000 10 0000 10 000 10 000 10 000 10 000 10 000 10 000 10 000	wo er.] × n a ut t er × $\frac{134}{-\frac{4}{2}}$	2 er 1000 1000 1000 1000 800 0 = -550 0 = -550	$mb = \frac{8}{2}$ $= \frac{8}{2}$ $= 0$	s = 5(er i eroe <u>30</u> > 34 <u>25</u> =	to 1 0900 s m es to < 63 = 70	he r)00 ultip o the 26	ight lied rig	t si l by	y 10 ide y 10 side	of 00 of
		3)(2)								
				3	5						
×				4	0						
			-	0	0						
				0	×						
+ 2	5	1	2	3	2						

(e) $900 \times 349 = 314100$ (vi) (4)(8)3 4 9 9 \times 3 1 4 1 (f) $2000 \times 29 = 58000$ (v) 5. (a) $2 \times 195 \times 5 = 195 \times 10 = 1950$ (b) $400 \times 25 \times 4 = 400 \times 100 = 40000$ (c) $10 \times 3364 \times 10 = 3364 \times 100 = 336400$ (d) $4368 \times 500 \times 2 = 4368 \times 1000 = 4368000$ (e) $4 \times 6666 \times 25 = 6666 \times 100 = 666600$ (f) $4010 \times 50 \times 2 = 4010 \times 100 = 401000$ (a) Cost of one bed = $\gtrless 4560$ 6. Cost of 380 beds = $\gtrless 4560 \times 380$ = ₹173280<u>0</u> (1)(1)(4)(4)4 5 6 0 3 8 \times (1)(1)3 6 4 8 0 3 6 8 0 + 1 \times 7 2 1 3 8 2 Answer: cost of 380 beds is ₹1732800 (b) Number of days in a year = 365Number of hours in one day = 24Number of hours in 365 days = 365×24 = 8760 hours (1)(1)(2)(2)3 6 5 2 4 1 4 6 0 + 7 3 0X

Answer: These are 8760 hours in one year.

8 7

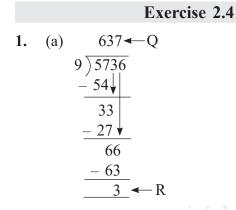
6 0

Mathematics-5

(c)	 (c) Price of one sofa set = ₹2540 Price of 195 sofa sets = ₹2540 × 195 									
						= ₹495300				
			(4)	3						
			2	2						
			2	5	4					
×			1	9	5					
		1	1							
		1	2	7	0					
	2	2	8	6	×					
+	2	5	4	×	×					
	4	9	5	3	0					

Answer: Price of 195 sofa sets is ₹495300.
(d) Number of toys a box contain = 150

Number of a toys boxes brought to the market = 4500


Number of toys brought to the market = Number of toys in the box × Number of boxes brought by the market

$$= 150 \times 4500$$

= 675000 toys

		(2)		
		1		
		1	5	0
×			4	5
		7	5	0
	6	0	0	×
	6	7	5	0

Answer: 675000 toys were brought to the market.

Checking: Dividiend = Quotient × Divisor + Remainder

Checking: Quotient × Divisor + Remainder

				(1)				
			1	\bigcirc				
		1	1	4	9			
×				2	3			
		1	1					
		3	4	4	7			
+	2	2	9	8	×			
	2	6	4	2	7	-		
26	436	= 2	23 >	< 11	49	+ 9		
26436 = 264297 + 9								
26	436	= 2	2643	36				
(c) $42 \leftarrow Q$								
		43		334	_			
		_	-17	2	_			
			1	14				
				86	_			
				28	-	- R		

Answer Key 13

Ch		cing mair			lenc	$l = Divisor \times Quotient +$
	ĸe	man	Ide	L		
			1			
			4	3		
×			4	2		
		1				
			8	6		
+	1	7	2	×		
	1	8	0	6		
18	34 :	= 43	3 ×	42	+ 2	8
		= 18				-
		= 18			-	
(d)				458	•	- Q
		192		8004		
				58		
			11	20		
			-	960	_	
				1604		
				$\frac{1536}{68}$	_	R
Ch	eck	zino			_	$H = \text{Divisor} \times \text{Quotient} +$
Ch		mair			.enc	Quotient
				(3)		
			(4)	(1)		
			$\overline{(7)}$	(1)		
			1	9	2	
×			4	5	8	
		1				
		1	5	3	6	
		9	6	0	×	
+	7	6	8	×	×	
_	8	7	9	3	6	
88	004	= 1	92	× 4	58	+ 68
		= 8				
88	004	= 8	380	04		

2.	(a) D	ivide	end =	= D:	ivisc	or ×	Quotient + Remainder
					2		
				4	0	3	
	×			8	0	1	
				4	0	3	
			0	0	0	×	
	+ 3	2	2	4	×	×	
	3	2	2	8	0	3	
	D	ivide	ed =	40.	3 ×	801	+ 325
	D	ivide	ed =	322	2803	; +	325
	D	ivide	ed =	323	3128	8	
	(b) D	ivide	end	= D	ivisc	or ×	Quotient + Remainder
			2	4			
			1	3			
			1	3	6		
	×			7	5		
		1	1				
			6	8	0		
	+	9	5	2	×		
	1	0	2	0	0		
	1023	1 =	136	× 7	75 +	31	
	1023	1 =	1020	- 00	+ 31		
	1023	1 =	1023	31			
3.	(a) 5	67 ÷	56	7 =	<u>1</u>		
	(b) 3		_				
	(c) <u>6</u>						
4.							P = 543, R = 63 [When
							by 100, the number d ones digits of the
							e remainder and the
	nı	ımbe	er fo	orm	ed b	y 1	the rest of the digits
	be	ecom	es t	he o	quoti	ient	.]

(b) $43033 \div 100$, (i) Q= 430, R = 33 [When a number is divided by 100, the number formed by tens and ones digits of the dividend become the remainder and the number formed by the rest of the digits becomes the quotient.]

Mathematics-5

- (c) 921735 ÷1000, (v) Q= 921, R = 735 [When a number is divided by 1000, the number formed by hundreds, tens and ones digits of the dividend becomes the remainder and the number fromed by the rest of the digits becomes the quotient.]
- (d) $82824 \div 100$, (vi) Q= 828, R = 24 [When a number is divided by 100, the number formed by tens and ones digits of the dividend become the remainder and the number formed by the rest of the digits becomes the quotient.]
- (e) $4876 \div 10$, (ii) Q= 487, R= 6 [When a number is divided by 10, the ones digit of the dividend become the remainder and the number formed by the rest of the digits becmes the quotient.]
- (f) $697770 \div 100$, (iv) Q = 6977, R = 70 [When a number is divided by 100, the number formed by tens and ones digits of the dividend become the remainder and the number formed by the rest of the digits becomes the quotient.]
- 5. (a) Total money contributed to the charity fund: Rs 98762

Number of people charity will be used for: Rs 437

Money used for each person : Total money \div number of people

$$=$$
 Rs 98762 \div 437

=	Rs 226
	226 ← Q
437	98762
-	- 874↓
	1136 - 874 ▼
	- 874 🗸
	2622
	- 2622
	<u>0</u> ← R

Answer: Rs 226 will be used for each person.

(b) Product of two numbers = 332878One of the number = 826Second number = Product of numbers \div one of the numbers 403 **←**Q 826)332878 - 3304 2478 -2478 $\overline{0} - R$ = $332878 \div 826$ = 403Answer: The second number is 403. (c) Number of phone sets = $\gtrless 130$ Cost of phone sets = ₹299520 Cost of 1 phone set = Cost of phone sets \div Number of phone sets 2304 **←**Q 130)299520 - 260 395 - 390 520 -520 $\overline{0} \leftarrow R$ $= 299520 \div 130$ = ₹2304 **Answer:** Cost of 1 phone set is ₹2304 **Exercise 2.5** (a) Sum of money = $\overline{120} + \overline{56} + \overline{108} +$ ₹32

= ₹316 ① ①

1.

Answer Key 15

Number of money = 4Average = $\frac{\text{Sum of money}}{\text{Number of money}} = \frac{316}{4} = ₹79$ (b) Total time = 8 hours + 9 hours + 13 hours = 30 hours Number of time = 3Average = $\frac{\text{Total time}}{\text{Number of time}} = \frac{30}{3} = 10$ hours First six even numbers = 2, 4, 6, 8, 10 and 122. Sum of first six even numbers = 2 + 4 + 6 + 68 + 10 + 12= 42Average = $\frac{\text{Sum of six first even Number}}{\text{Number of six first even Number}}$ $=\frac{42}{6}=7$ (b) First eight whole numbers = 0, 1, 2, 3, 4, 5,6, 7 Sum of first eight whole numbers = 0 + 1+2+3+4+5+6+7=28Average = $\frac{\text{Sum of first of whole numbers}}{\text{Number of whole numbers}}$ Average $=\frac{28}{8} = 3.5$ (c) First 3 two digit numbers = 10, 11, 12Sum of first 3 two digit numbers =10 + 11+ 12= 33 Sum of three two digit numbers Average =Number of two digit number $=\frac{33}{3}=11$ (d) First three odd 3-digit numbers = 101, 103, 105 Sum of first three odd 3-digit numbers = 101 + 103 + 105= 309 $Average = \frac{Sum \text{ of first three odd digit numbers}}{Number \text{ of first three odd digit number}}$ $=\frac{309}{3}=103$ Total numbers = 53. Sum of numbers = 3840Average = $\frac{\text{Sum of numbers}}{\text{Total numbers}} = \frac{2840}{5} = 768$ Sum of number =Rs 110 + 70 + 80 + 95 + 574. + 12 + 140 = ₹672 Number of days = 7

Average income = $\frac{\text{Sum of income}}{\text{number of days}} = \frac{672}{7} =$ **Rs** 96 Total marks obtained by Ananya = 4605. Number of subjects = 4Average marks = $\frac{10001 \text{ mm}}{\text{Number of subjects}}$ $=\frac{460}{4}=115$ Let the number of students present on Friday be x Number of students present from Monday to Friday = 725 + 635= 735 + 625 + x= 2720 + xNumber of days = 5Total number of students present from Monday to friday Average = -Number of days $700 = 2720 + x \div 5$ $2720 + x = 700 \times 5$ 2720 + x = 3500X= 3500 - 2720 X= 780 Answer: 780 student were present on Friday.

6.

Exercise 2.6

(a) 11 kg for Rs 33 or 20 kg for Rs 70 1. Price for $1 = 33 \div 11$ or $70 \div 20$ = 3 or 3.5= 3 < 3.5Hence, 11 for Rs 33 is a better buy. (b) 4 kg for Rs 80 or 8 kg for Rs 150 $80 \div 4$ or $150 \div 8$ 20 or 18.75 20 > 18.75Hence, 8 kg for Rs 150 is a better buy. (c) 8 kg for Rs 124 or Rs 13 for 208 $124 \div 8 \text{ or } 208 \div 13$ 15.5 or 16 15.5 < 16Hence, 8 kg for Rs 124 is a better buy.

Mathematics-5

(d) 12 kg for Rs 504 or 18 kg for Rs 684 $504 \div 12$ or $684 \div 18$ 42 or 38 42 > 38 Hence, 18 kg for Rs 684 is a better buy. 2. (a) Number of pens = 5Cost of pens = Rs 20Cost of one pen = cost of pen \div number of pens = ₹20 ÷ 5 = ₹4 (i) Cost of 8 pens = cost of 1 pen \times 8 = ₹4 × 8 = ₹32 (ii) Cost of 15 pens = cost of one pen x 15 = ₹4 × 15 = ₹60 (b) Number of oranges = 35Cost of oranges = ₹210 Cost of one orange = cost of oranges \div number of oranges = $\gtrless 210 \div 35$ = ₹6 6 ←0 35) 210 - 210 $0 \leftarrow R$ Cost of 15 oranges = Cost of one orange \times 15 $= \text{Rs} \ 6 \ \times 15 = \90 (c) Weight of potatoes = 12kg Cost of potatoes = ₹72 Cost of 1 kg potato = weight of potatoes \div cost of potatoes = ₹72 ÷ 12 = 6 Q 6 12) 72 - 72 0 - R

Cost of 27 kg of potatoes = cost of one kg of potato \times 27 (4) 2 7 6 1 6 2 = ₹6 × 27 = ₹162 (d) Total money earned = Rs 45000Number of months = 9Money earned in one month = Total money earned ÷number of months = ₹45000 ÷ 9 = ₹5000 One year = 12 months \therefore 2 years = 2×12 months = 24 months Money earned in 2 years = money earned in one month ×months in two years = ₹5000 × 24 = ₹120000 (2) 2 4 5 1 2 0 Answer: He will earn 120000 in2 years. (e) Quantity of milk = 12 litres Cost of milk = ₹432 Cost of 1 litre of milk = cost of milk \div quantity of milk = ₹432 ÷ 12 = ₹36 36 **←**Q 12) 432 - 36 72 - 72 ← R

Х

Answer Key 17

j o o

Cost of 35 litres of milk = cost of one litre of milk \times 35

			1	
			3	
			3	6
×			3	5
		1		
		1	8	0
+	1	0	8	×
	1	2	6	0
_	₹36	5 ×	35	
=]	Rs	126	0	

Exercise 2.7

 (a) C.P = ₹628, SP = ₹665 628 < 665, CP < SP Therefore, profit.
 (b) C.P = ₹287, Sp = ₹297 ₹287 < ₹297 CP < SP Therefore, profit
 (c) CP = ₹945, SP= ₹895 ₹945 > ₹895 CP > SP

Therefore, loss

2.

S.no	СР	SP	Profit or	Amount
			Loss	
	₹4075	₹ 4500	SP > CP,	₹4500 -
(a)			therefore	₹4075 =
			profit	₹4.25
(b)	₹159.60	₹	CP > SP	₹159.60 -
		152.75	therefore	₹152.75 =
			loss	₹6.85
(c)	₹	₹	CP > SP	₹ 258445
	258445	39995	therefore	–₹39995
			loss	= 218,450

	_				
(d))	₹ 75500	₹	SP > CP	₹83695 -
			83,695	therefore	₹75500 =
				loss	₹8195
3.	С	ost price c	of televisi	ion = ₹7500	
	Se	elling price	e of telel	vision = ₹599	5
	₹7	7500 > ₹5	995		
	С	ost price >	> Selling	price	
	Tl	herefore, I	t is a los	S	
	L	oss Amour	nt = Cost	price – Sellin	ng price
	=	₹7500 – 1	Rs 5995		

= ₹1505

- **Answer:** Bindra made a loss of ₹1505
- 4. Cost price of table = ₹3500 Selling price of table = ₹4500 3500 < 4500 Cost price < selling price Therefore, It is a profit Profit = ₹(4500 - 3500) = ₹1000 Answer: Carpenter has made profit of ₹1000.

Exercise 2.8

1.	(a) CP = ₹7420, Profit = 595
	Profit = CP - SP
	SP = Profit + CP
	SP= ₹595 + ₹7420
	SP = ₹8015
	(b) CP = ₹1744 , Loss = ₹195
	Loss = CP - SP
	SP = CP - Loss
	SP = ₹1744 - ₹195
	SP = ₹1549
	(c) SP = ₹9754, LOSS = ₹159
	LOSS = CP - SP
	CP = Loss + SP
	= ₹159 + ₹9754
	= ₹9913

18 Mathematics-5

(d)
$$SP = Rs 25, 790$$
, $Profit = RS 4250$
 $Profit = SP - CP$
 $CP = SP - Profit$
 $CP = Rs 25790 - RS 4250$
 $CP = Rs 21540$

2.

S.No	CP(₹)	SP (₹)	Profit or	Amount (₹)
			Loss	
(a)	85.75	15.50	CP > SP	85.75 - 15.50
			loss	= 7025
(b)	122.95	275.50	CP < SP	152.75
			profit	
(c)	23695	22145	CP > SP	1550
			loss	
(d)	99995	74990	CP > SP	25005
			loss	

(b)
$$Profit = SP - CP$$

$$SP = CP + Profit$$
$$SP = ₹122.95 + ₹152.75$$
$$SP = ₹275.70$$

(c) Loss = CP - SP, SP = CP - Loss SP = 23, 695 - 1550 SP = ₹22145
(d) Loss = CP - SP

$$SP = CP - Loss$$

3. (b) Profit = SP - CPCP = SP - Profit

(c) Loss =
$$CP - SP$$

 $CP = SP + Loss$
 $CP = ₹52500 + 3540$
 $CP = ₹56040$

(d)
$$Profit = SP - CP$$

 $CP = SP - Profit$
 $CP = Rs \ 10450 - Rs \ 635$

 $CP = Rs \ 9765$

- 4. Profit gained on sofa set = Rs 3200 Selling price of sofa set = Rs 43455 Profit = SP - CP CP = SP - profit Cp = Rs 43455 - Rs 3200 Cp = Rs 40255
 Answer: Cost price of sofa set is Rs 40225
- 5. Cost price of tennis balls = 3450
 Profit Salman want to make = Rs 550
 Profit = SP -CP
 SP = Profit + CP
 SP = Rs 550 + RS 3450
 SP = Rs 4000
 Answer: in order to make Rs 550 profit on

tennis balls Salman has to sell then at Rs

6. (a)
$$CP = Rs 85$$
, $SP = Rs 90$

(b)
$$CP = Rs 55, SP = 63$$

400.

(c)
$$SP = Rs \ 180, \ CP = RS \ 195$$

7.

	Cost Price	Selling Price	Comparison	Profit and
				Loss
(a)	₹23	₹30	₹23 < ₹30, CP	Profit
			< SP	
(b)	₹55	₹48	₹55 > ₹48 , CP	Loss
			> SP	
(c)	₹190	₹188.50	₹190 > ₹188.50,	Loss
			CP > SP	
(d)	₹268	₹258	₹268 > ₹258, CP	Loss
			> SP	
(e)	₹1540	₹1820	₹1540 < ₹1820,	Profit
			CP < SP	
(f)	₹6273	₹5690	₹6273 > ₹5693,	Loss
			CP >SP	
(g)	₹1043	₹2010	₹1043 < ₹2010,	Profit
			CP < SP	

Answer Key 19

(a) Loss = CP - SP8. CP = Loss + SPCP = ₹300 + 35 CP = ₹335 (b) Profit = SP - CPSP = CP + ProfitSP = ₹1550 + ₹90 SP = ₹1640 (c) Profit = SP - CPCP = SP - ProfitCP = ₹1820 - ₹160 CP = ₹1660 (d) Loss = CP - SPSP = CP - LossSP = ₹12240 - ₹1210 SP = ₹11030 (e) Profit = SP - CPCP = SP - ProfitCP = ₹3365 - ₹485 CP = ₹2880 (f) Loss = CP - SPSP = CP - LossSP = ₹9000 - ₹320 SP = ₹8680

9.

	(a)	(b)	(c)	(d)
Cost Price	₹94	₹64	₹625.75	₹426.25
Selling Price	₹105	₹58	₹987	₹412.50
Profit and Loss	SP>CP Therefore, Profit	CP > SP Therefore, Loss	CP < SP Therefore, Profit	C.P>SP Therefore, Loss

10. Cost Price Of Table : ₹705

Selling Price Of Table : ₹755

Profit: Selling Price – Cost Price = $\overline{100}$ = $\overline{1000}$ = $\overline{10000}$

Answer: Mina Made Profit Of Rs 50 on table.

11. Cost Price of Old Car = $\gtrless 4500$ Repairing Cost of Old Car = ₹625 Selling Price of Old Car = ₹49995 Total CP = CP + Repairing CostTotal CP = 45000 + 625Total CP = ₹45625 45625 < 49995 CP < SPTherefore, Profit Profit = SP - CP, 49995 - 45625= ₹4370 **Answer:** Shikhar had a profit of ₹4370. 12. Cost Price of Cow = \gtrless 5490 Money Spent on Transportation = ₹240 Selling Price of Cow = ₹5509 Total Cost Price = CP + Transportation Price Total Cost Price = ₹5490 + ₹240 = ₹5730 ₹5509 < ₹5730, SP < CP Loss = CP - SP₹5730 - ₹5509 = ₹221 Answer: Rahul Had a loss of ₹221 on Cow. **13.** Cost Price of Table fan = $\gtrless 1294$ Loss on Table Fan = \mathbf{E} 176 Loss = CP - SP

SP = CP - LossSP = ₹1294 - ₹176

SP = ₹1118

Answer: Selling Price of Table fan is ₹1118.

Learning Updates

1.	(a)		1	1	1	1	1	
			9	9	7	3	6	4
		+	3	4	5	6	4	8
		1	3	4	3	0	1	2

Mathematics-5

(b) 1 1 2 1 5 3 4 6 8 6 3 6 4 3 8 5 + 6 4 3 6 5 9 6 3 4 3 6 (c) 1 1 1 1 1 5 7 3 6 4 8 2 4 7 3 6 + 3 6 4 8 3 6 3 4 8 6 7 2. (a) 12 15 13 8 $2 5 3 13$ 9 $3 4 8 6 7$ 2. (a) 12 15 13 8 $2 5 3 13$ 9 $3 6 4 8 3$ 8 $7 9 9 5 3$ (b) 13 12 15 5 $3 2 5 10$ 6 4 8 3 8 $7 9 9 5 3$ (c) 13 12 15 5 $3 2 5 10$ 6 4 8 3 8 $7 9 9 5 3$ (c) 13 12 15 5 $3 2 5 10$ 6 4 8 3 8 $7 9 9 5 3$ (c) 13 12 15 5 $3 2 5 10$ 6 5 3 6 9 9 2 3 (c) 16 15 12 17 3 $6 8 6$ 3 6 9 9 2 3 (c) 16 15 12 17 3 $6 5 5 2 7 16$ 4 7 6 3 8 6 - 1 9 9 9 9 9 9 2 7 6 3 8 7 3. (a) 10 10		(b)										
$3 \ 6 \ 4 \ 3 \ 8 \ 5 \\ + \ 6 \ 4 \ 3 \ 6 \ 5 \\ 9 \ 6 \ 3 \ 4 \ 3 \ 6 \\ 5 \\ 9 \ 6 \ 3 \ 4 \ 3 \ 6 \\ 6 \\ 9 \ 6 \ 3 \ 4 \ 3 \ 6 \\ 6 \\ 9 \ 6 \ 3 \ 4 \ 3 \ 6 \\ 6 \\ 9 \ 6 \ 3 \ 4 \ 3 \ 6 \\ 7 \\ 6 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\$		(0)		1	1	1	2	1				
$\begin{array}{c} + & 6 & 4 & 3 & 6 & 5 \\ \hline 9 & 6 & 3 & 4 & 3 & 6 \\ \hline 9 & 6 & 3 & 4 & 3 & 6 \\ \hline 9 & 6 & 3 & 4 & 3 & 6 \\ \hline 9 & 6 & 3 & 4 & 8 & 6 \\ \hline 5 & 7 & 3 & 6 & 4 & 8 \\ 2 & 4 & 7 & 3 & 6 \\ \hline + & 3 & 6 & 4 & 8 & 3 \\ \hline 6 & 3 & 4 & 8 & 6 & 7 \\ \hline 2 & (3) \\ \hline 12 & (5) \\ \hline 8 & 2 & 5 & 3 & 13 \\ \hline 9 & 3 & 6 & 4 & 8 & 3 \\ \hline 8 & 7 & 9 & 9 & 5 & 3 \\ \hline (b) \\ \hline 13 & (2) & (5) \\ \hline 6 & 5 & 6 & 4 & 8 & 3 \\ \hline 8 & 7 & 9 & 9 & 5 & 3 \\ \hline (b) \\ \hline 13 & (2) & (5) \\ \hline 6 & 5 & 6 & 4 & 8 & 3 \\ \hline 8 & 7 & 9 & 9 & 5 & 3 \\ \hline (b) \\ \hline 13 & (2) & (5) \\ \hline 6 & 5 & 6 & 4 & 8 & 3 \\ \hline 8 & 7 & 9 & 9 & 5 & 3 \\ \hline (b) \\ \hline 13 & (2) & (5) \\ \hline 6 & 5 & 6 & 4 & 8 & 3 \\ \hline 8 & 7 & 9 & 9 & 5 & 3 \\ \hline (b) \\ \hline (c) \hline (c) \\ \hline (c) \\ \hline (c) \\ \hline (c) \hline (c) \hline (c) \\ \hline (c) \hline ($				5	3	4	6	8	6			
$ \begin{array}{c} \hline 9 & 6 & 3 & 4 & 3 & 6\\ \hline (c) \\ 1 & 1 & 1 & 1 & 1\\ 5 & 7 & 3 & 6 & 4 & 8\\ 2 & 4 & 7 & 3 & 6\\ + & 3 & 6 & 4 & 8 & 3\\ \hline 6 & 3 & 4 & 8 & 6 & 7\\ \end{array} $ 2. (a) $ \begin{array}{c} 12 & 13 & 13\\ 8 & 2 & 5 & 3 & 13\\ 9 & 5 & 6 & 4 & 8 & 3\\ \hline 8 & 7 & 9 & 9 & 5 & 3\\ \hline (b) \\ 13 & 12 & 15\\ \hline 5 & 5 & 7 & 5 & 10\\ 6 & 4 & 5 & 6 & 6\\ \hline 3 & 6 & 9 & 9 & 2 & 3\\ \hline (c) \\ \hline (c) \\ \hline (b) & (6 & 15 & 12 & 17)\\ \hline 3 & 6 & 5 & 7 & 7 & 16\\ 4 & 7 & 6 & 5 & 8 & 6\\ \hline - & 1 & 9 & 9 & 9 & 9 & 9\\ \hline 2 & 7 & 6 & 3 & 8 & 7\\ \hline 3. (a) \end{array} $ (1) (1)				3	6	4	3	8	5			
(c) (c) (c) (c) (c) (c) (c) (c)			+		6	4	3	6	5			
$\begin{array}{c} (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)$				9	6	3	4	3	6			
$\begin{array}{c} (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)$		(c)			-		-	-				
$ \begin{array}{c} 2 & 4 & 7 & 3 & 6 \\ + & 3 & 6 & 4 & 8 & 3 \\ \hline 6 & 3 & 4 & 8 & 6 & 7 \end{array} $ 2. (a) $ \begin{array}{c} 12 & 15 & 13 \\ 8 & 2 & 5 & 3 & 13 \\ 9 & 3 & 6 & 4 & 8 & 3 \\ \hline 9 & 3 & 6 & 4 & 8 & 3 \\ \hline 9 & 3 & 6 & 4 & 8 & 3 \\ \hline 9 & 3 & 6 & 4 & 8 & 3 \\ \hline 9 & 3 & 6 & 4 & 8 & 3 \\ \hline 9 & 3 & 6 & 4 & 8 & 3 \\ \hline 9 & 3 & 6 & 4 & 8 & 3 \\ \hline 9 & 3 & 6 & 4 & 8 & 3 \\ \hline 9 & 3 & 6 & 4 & 8 & 3 \\ \hline 9 & 3 & 6 & 4 & 8 & 3 \\ \hline 9 & 3 & 6 & 4 & 8 & 3 \\ \hline 9 & 3 & 6 & 4 & 8 & 3 \\ \hline 9 & 3 & 6 & 4 & 8 & 3 \\ \hline 9 & 3 & 6 & 4 & 8 & 3 \\ \hline 9 & 3 & 6 & 4 & 8 & 3 \\ \hline 9 & 3 & 6 & 4 & 8 & 3 \\ \hline 9 & 3 & 6 & 4 & 8 & 3 \\ \hline 9 & 3 & 6 & 4 & 8 & 3 \\ \hline 9 & 3 & 12 & 15 \\ \hline 5 & 3 & 2 & 5 & 10 \\ \hline 6 & 13 & 12 & 15 \\ \hline 5 & 3 & 2 & 5 & 10 \\ \hline 6 & 6 & 15 & 12 & 17 \\ \hline 3 & 6 & 5 & 2 & 7 & 16 \\ & 4 & 7 & 6 & 3 & 8 & 7 \\ \hline 3 & (a) \end{array} $ (b) $13 & (1) (1)$		(0)		0								
$\begin{array}{c} + & 3 & 6 & 4 & 8 & 3 \\ \hline 6 & 3 & 4 & 8 & 6 & 7 \end{array}$ 2. (a) $\begin{array}{c} 12 & 15 & 13 \\ & 8 & 2 & 5 & 3 & 13 \\ & 9 & 3 & 6 & 4 & 8 & 3 \\ & 8 & 7 & 9 & 9 & 5 & 3 \end{array}$ (b) $\begin{array}{c} 13 & 12 & 15 \\ & 5 & 3 & 7 & 9 & 9 & 5 & 3 \end{array}$ (b) $\begin{array}{c} 13 & 12 & 15 \\ & 5 & 3 & 2 & 5 & 10 \\ & 6 & 4 & 8 & 3 \\ \hline 8 & 7 & 9 & 9 & 5 & 3 \end{array}$ (c) $\begin{array}{c} 16 & 15 & 12 & 17 \\ & 3 & 6 & 5 & 2 & 7 & 16 \\ & 4 & 7 & 6 & 3 & 8 & 7 \end{array}$ (c) $\begin{array}{c} 16 & 15 & 12 & 17 \\ & 3 & 6 & 5 & 2 & 7 & 16 \\ & 4 & 7 & 6 & 3 & 8 & 7 \end{array}$ 3. (a) $\begin{array}{c} 11 & 10 \\ \end{array}$				5			6		8			
$ \begin{array}{c} \hline 6 & 3 & 4 & 8 & 6 & 7\\ \hline 2. (a) \\ 12 & 15 & 13 \\ 8 & 2 & 5 & 3 & 13 \\ 9 & 3 & 6 & 4 & 3 & 3 \\ \hline 9 & 3 & 6 & 4 & 8 & 3 \\ \hline 9 & 3 & 6 & 4 & 8 & 3 \\ \hline 8 & 7 & 9 & 9 & 5 & 3 \end{array} $ (b) $ \begin{array}{c} 13 & 12 & 15 \\ \hline 5 & 3 & 2 & 5 & 10 \\ \hline 6 & 4 & 3 & 6 & 6 \\ \hline 3 & 6 & 9 & 9 & 2 & 3 \end{array} $ (c) $ \begin{array}{c} 16 & 15 & 12 & 17 \\ \hline 3 & 6 & 5 & 2 & 7 & 16 \\ \hline 4 & 7 & 6 & 3 & 8 & 7 \\ \hline 9 & 9 & 9 & 9 & 9 & 9 \\ \hline 2 & 7 & 6 & 3 & 8 & 7 \end{array} $ 3. (a) $ \begin{array}{c} 11 & 0 \\ \hline 11 & 0 \\ \hline \end{array} $						4	7	3	6			
2. (a) 12 15 13 8 $2 5 3 13$ 9 $3 6 4 3 6$ - 5 6 4 8 3 8 7 9 9 5 3 (b) 13 12 15 5 $3 2 5 10$ 6 4 3 6 9 - 2 7 3 6 8 6 3 6 9 9 2 3 (c) 16 15 12 17 3 $6 5 2 7 16$ 4 7 6 3 8 6 - 1 9 9 9 9 9 2 7 6 3 8 7 3. (a)			+		3	6	4	8	3			
(b) (c) (c) (c) (c) (c) (c) (c) (c				6	3	4	8	6	7			
(b) (c) (c) (c) (c) (c) (c) (c) (c	2	(-)										
$\begin{array}{c} 9 & 3 & 6 & 4 & 3 \\ - & 5 & 6 & 4 & 8 & 3 \\ \hline 8 & 7 & 9 & 9 & 5 & 3 \end{array}$ (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	۷.	(a)			(2) (1	51	3)				
$\begin{array}{c} 9 & 3 & 6 & 4 & 3 \\ - & 5 & 6 & 4 & 8 & 3 \\ \hline 8 & 7 & 9 & 9 & 5 & 3 \end{array}$ (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c					8) 2	2	8 2	3	3)			
$\begin{array}{c} - & 5 & 6 & 4 & 8 & 3 \\ \hline 8 & 7 & 9 & 9 & 5 & 3 \\ \hline \end{array}$ (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c					-			-				/
(b) $ \begin{array}{c} 8 & 7 & 9 & 9 & 5 & 3 \\ (a) & 3 & 2 & 5 & 0 \\ & 5 & 7 & 7 & 5 & 0 \\ & 5 & 7 & 7 & 5 & 0 \\ & 5 & 7 & 7 & 5 & 0 \\ & 6 & 7 & 7 & 5 & 8 & 6 \\ \hline & 7 & 6 & 3 & 6 & 9 & 9 \\ \hline & 7 & 6 & 3 & 8 & 7 \\ \end{array} $ (c) $ \begin{array}{c} 8 & 7 & 9 & 9 & 5 & 3 \\ & 5 & 7 & 5 & 0 \\ & 7 & 6 & 3 & 8 & 7 \\ \hline & 7 & 6 & 3 & 8 & 7 \\ \hline & 3 & 6 & 7 & 6 & 3 & 8 & 7 \\ \hline & 3 & 6 & 7 & 6 & 3 & 8 & 7 \\ \hline & 3 & 6 & 7 & 6 & 3 & 8 & 7 \\ \hline & 3 & 6 & 7 & 6 & 3 & 8 & 7 \\ \hline & 3 & 6 & 7 & 6 & 3 & 8 & 7 \\ \hline & 3 & 6 & 7 & 6 & 3 & 8 & 7 \\ \hline & 3 & 6 & 7 & 6 & 3 & 8 & 7 \\ \hline & 3 & 6 & 7 & 6 & 3 & 8 & 7 \\ \hline & 3 & 6 & 7 & 6 & 3 & 8 & 7 \\ \hline & 3 & 6 & 7 & 6 & 3 & 8 & 7 \\ \hline & 3 & 6 & 7 & 7 & 6 & 3 & 8 & 7 \\ \hline & 3 & 6 & 7 & 7 & 6 & 3 & 8 & 7 \\ \hline & 3 & 6 & 7 & 7 & 6 & 3 & 8 & 7 \\ \hline & 1 & 1 & 1 \\ \hline \end{array} $				_								
(b) (b) (c) (c) (c) (c) (c) (c) (c) (c			-	5					_			
(c) (c) (c) (c) (c) (c) (c) (c)			-						5			
$ \begin{array}{c} $		(0)			ĺ	3	2	5				
$ \begin{array}{c} $					5) 2	8 ;	2 2	8	0			
$\begin{array}{c} -2 & 7 & 3 & 6 & 8 & 6 \\ \hline 3 & 6 & 9 & 9 & 2 & 3 \end{array}$ (c)					-							
(c) $ \begin{array}{c} 3 & 6 & 9 & 9 & 2 & 3 \\ \hline 3 & 6 & 9 & 9 & 2 & 3 \\ \hline 16 & 15 & 12 & 17 \\ \hline 3 & 8 & 5 & 2 & 7 & 16 \\ \hline 4 & 7 & 8 & 3 & 8 & 8 \\ \hline -1 & 9 & 9 & 9 & 9 & 9 \\ \hline 2 & 7 & 6 & 3 & 8 & 7 \\ \end{array} $ (a) (1) (0)												
(c) (c) (6) (5) (2) (7) (3) $6 5 2 7 (6)$ 4 7 6 3 8 6 -1 9 9 9 9 9 2 7 6 3 8 7 3. (a) (1) (0)			-			_				_		
$3 \ \cancel{6} \ \cancel{5} \ \cancel{2} \ \cancel{1} \ \cancel{6} \ 6$		(α)	-									
$ \frac{\cancel{4}}{\cancel{7}} \ \cancel{6} \ \cancel{3} \ \cancel{8} \ \cancel{6} \\ -1 \ 9 \ 9 \ 9 \ 9 \ 9 \\ 2 \ 7 \ 6 \ 3 \ 8 \ 7 $ 3. (a) $ (1) (1) $					I	61	5)(1	21	$\overline{\mathcal{D}}$			
$ \frac{-1999999}{276387} $ 3. (a) (1)					3)	8 ;	8 7	27	16			
$ \frac{-1999999}{276387} $ 3. (a) (1)				4	4 7	7	8 2	8 8	6			
3. (a)												
3. (a)			-									
	3	(a)	-									
	э.	(a)										
⑦ 14 ⑦ 15 ⑦ 𝒴 0												(11) (1
		7		4						\bigcirc (5	5)7	X

	(b)													
	8	14		6	13				(1			1		
	Ø	Å	8	7	z	6		~		8	9	2	2	6	0
_		5	6	4	7	6			+		1	1	6	4	5
	8	9	2	2	6	0]		9	0	3	9	0	5
4.	(a)					1								
						1		1							
						1	2	1							
						4	3	6	4						
			×				2	3	4						
				1	1	2									
					1	7	4	5	6						
				1	3	0	9	2	×						
			+	8	7	2	8	×	×						
				10	2	1	1	7	6	_					
	(b)					2								
						4	0	4	0						
			×				1	5	2						
					1										
						8	0	8	0						
				2	0	2	0	0	×						
			+	4	0	4	0	×	×						
				6	1	4	0	8	0	_					
	(c)				6	8	6	8						
			×			U	1	1	1						
				(1)	(2)	2	1								
						6	8	6	8						
					6	8	6	8	8 ×						
			+	6	8	6	8	×	×						
				7	6	2	3	4	8						
						-									

8 8 4 6 4 8

8 5 8 2 1 2

2 6 4 3 6

\$ \$ \$ \$ Z X Z

4

7 7

8 3 6 4 5

5 6 7

Answer Key 21

5. (a)

$$3104 \\
8) 24836 \\
-24 \\
08 \\
-8 \\
036 \\
-32 \\
4$$

 $Divided = Divisor \times Quotient + Remainder$

+ 4

				3		
		3	1	0	4	
	×				8	
	2	4	8	3	2	
	24	836	5 =	8 ×	31	3 +
	24	836	5 =	248	32	+ 4
	24	836	5 =	248	36	
(b)			26	11		
		36) 94	400	0	
			- 72			
			2	20	Ť	
			- 2	16	,	
		-		40		
			_	- 36	¥	
		_		4	0	
		_		- 3	6	
		_		4	1	
Div	vid	end	1 =	Div	1001	• × (

 $Dividend = Divisor \times Quotient + Remainder$

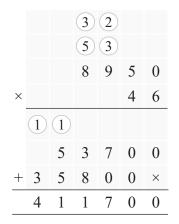
			1						
			2						
			2	6	1	1			
	X				3	6			
		1							
		1	5	6	6	6			
	+	7	8	3	3	×			
		9	3	9	9	6			
9	4	000	= 3	86 ×	< 26	1 +	4		
94000 = 93196 + 4									
9	4	000	= 9	9400	00				

Mathematics-5

22

379 (c) 145) 55000 - 435↓ 1150 - 1015 🖌 1350 - 1305 45 (3)(3)(3)(4)3 7 9 1 4 5 (1)(1)(1)1 8 9 5 $1 5 1 6 \times$ + 3 7 9 \times \times 5 4 9 5 5 $Dividend = Divisor \times Quotient + Remainder$ $55000 = 379 \times 145 + 45$ 55000 = 54955 + 4555000 = 55000Number should be added to 756483 to get 6. 954961 954961 - 75648 = 198000(14) 8 4 14 8 5 11 95496X - 7 5 6 4 8 3 1 9 8 4 7 8 Answer: 198478 should be added to 756483 to get 954961 7. Sum of numbers = 64 + 93 + 126 + 275 + 386= 944 Average = $\frac{\text{Sum of numbers}}{\text{Total numbers}} = \frac{.944}{.5} = 188.8$

Largest 4 digit number = 99998. Smallest 3 digit number = 100Product of largest 4 digit number and smallest 3 digit number $= 9999 \times 100$ = 9999009. Pages read on first day : 36 Pages read on second day: 48 Pages read on third day: 90 Total pages read 36 + 48 + 90 = 174 $\frac{\text{Total pages read}}{\text{Number of days}} = \frac{174}{3} = 58$ 58 3) 174 - 15 24 - 24


Answer: 58 pages are read by Somya on daily basis.

10. Cost of 1 mobile = Rs 8950

0

Cost of 46 such mobiles = Cost of 1 mobile \times 46

₹8750 × 46 = ₹411700

Answer: Cost of 46 such mobiles is Rs 411700

Multiple Choice Questions $936 \times 500 \times 0 = 0$ 1. [Product of any number with 0 is always with 0 is always 0] Answer: (b) 0 Smallest 4 digit number = 10002. Smallest 5 digit number = 10,000Smallest 6 digit number = 100000Sum of smallest 4 digit number, 5 digit number and 6 digit number $= 1000 + 10,000 + 100000 \ 1 \ 0$ 0 0 0 0 0 0 1 0 0 = 111000= Answer: (d) 111000 + 1 0 0 0 $986200 \div 100 = 9862$ [When a number is 3. divided by 100, the number formed by tens and ones digits of the dividend become the remainder and the number formed by the rest of the digits becomes the quotient.] Answer: (b) 9862 3 Lakh +12 Ten Thousand = 300000 + 1200004. = 420000Answer: (d) None of these $(60 + 40) \times 300 = 100 \times 300 = 30,000$ 5. (b) 30000 $493685 \div 100, R = 685$ [When a number 6. is divided by 1000, the number formed by hundreds, tens and ones digits of the dividend becomes the remainder and the number fromed by the rest of the digits becomes the quotient.] **Answer:** (a) 685

Answer Key 23

Skills Check

1.	(a)	1226	(b)	2797
		3 29)403354	1	24)346896
		-329		- 248
		743		988
		- 658		- 868
		855		1209
		- 658		- 1116
		1974		936
				- 868
		0		68
-				

2. Number of pages read by Ranjan in 1 day = 800 Number of pages read by Apurv in 2 days = 1872 Number of pages read by Arshat in 16 hours = 940 Who read the fastest: $\frac{800}{24}$ (1 day = 24 hours) $\frac{1872}{48}$ (2 days = 48 hours), = $\frac{940}{16}$ $\frac{940}{16} > \frac{1872}{48} > \frac{800}{24}$ [Arshat > Ranjna] Hence, Arshat read the fastest.

24 Mathematics-5

Simplifications

3

Exercise 3.1

1. $18 + 20 \div 4$ 1. 18 + 5 = 232. $15 \times 10 \div 2$ $15 \times 5 = 75$ 3. $32 - 8 \times 2$ 32 - 16 = 164. $16 - 16 \div 2 - 3$ 16 - 8 - 3 = 16 - 11 = 55. $37 - 6 \times 4 + 32 \div 4$ 37 - 24 + 813 + 8 + 21 6. $8 \times 13 - 4 \times 15$ 104 - 60 = 447. 96 ÷ 16 + 34 × 10 - 13 6 + 340 - 3 = 346 - 13= 333 8. $38 - 28 + 36 \div 2$ 38 - 28 + 18 = 289. $70 \div 14 \times 6 - 10 \div 5 + 1$ $5 \times 6 - 2 + 1$ = 30 - 2 + 1 = 29

Exercise 3.2

1. (a)
$$80 - \frac{1}{10}$$
 of $70 + 40 \div 4 - 3 \times 6$
 $80 - (70 \div 10) + 10 - 18$
 $80 - 7 + 10 - 18$
 $90 - 25 = 65$
(b) $70 + 2 \times 5 + \frac{1}{3}$ of $15 - 60 \div 6$
 $70 + 10 + 15 \div 3 - 10$
 $70 + 10 + 5 - 10$
 $= 75$

2. (a)
$$(5 + 4) \div 3 + 12 - 5 \times 2$$

 $9 \div 3 + 12 - 10$
 $3 + 2 = 5$
(b) $20 - (10 + 2) \div 3 + \frac{1}{2}$ of 4
 $20 - (12) \div 3 + 4 \div 2$
 $20 - 4 + 2$
 $= 18$
(c) $12 \div (2 \times 3) + \frac{1}{6}$ of $36 - 8$
 $12 \div 6 + (36 \div 6) - 8$
 $2 + 6 - 8$
 $8 - 8$
 $= 0$
(d) $20 \times (\frac{1}{5}$ of $25) - 100 \div (10 \times 10)$
 $20 + (25 \div 5) - 100 \div (100)$
 $20 + 5 - 1$
 $25 - 1 = 24$

Learning updates

1 (a)
$$(17 - 7) \times 5$$

(b) $(26 + 8) - 9$
(c) $36 \div (13 - 7)$
(d) $(16 + 8) \div (9 - 3)$
2. (a) $5 - 6 + 8$
 $= 13 - 6 = 7$
(b) $8 \times 9 \div 3$
 $8 \times 3 = 24$
(c) $4 + 4 + 4 \times 4 + 4$
 $4 + 4 + 16 + 4$
 $= 28$
(d) $100 + 50 \times 2$
 $100 + 100$
 $= 200$
(e) $15 \times 5 - 60 \div 15$
 $75 - 4$
 $= 71$

Answer Key

25

(f)
$$26 + 9 \times 8 \div 2 - 3$$

 $= 26 + 9 \times 4 - 3$
 $= 26 + 36 - 3$
 $= 26 + 33 = 59$
3. (a) $280 + 153 \div 17 - 8 \times 26$
 $280 + 9 - 208$
 $289 + (-208)$
 $= 81$
(b) $\frac{5}{6}$ of $36 \div (4 + 1) -2 + 15$
 $(36 \div 6) \times (5) -2 + 15$
 $6 \times 5 \div (5) -2 + 15$
 $6 \times 1 -2 + 15$
 $= 6 - 2 + 15 = 19$

Multiple Choice Question

1. (d) \div 2. $100 \div 10 + 10 \times 1$ = 10 + 10 = 20(a) 20 3. $49 \div 7 \times 7 + 5 \times 3 - 2$ $7 \times 7 + 15 - 2$ = 49 + 13 = 62(d) 62

Skills Check

26 Mathematics-5

•••••

Multiples and Factors

4

Get Started

Item	Quantity	Price (₹)	Total (Quantity ×
			Price)
Pencil	12	8	96
Pen	14	17	238
Oil pasttels	5	175	875
Paint Colour	7	195	1365
Notebooks	19	250	4750
			₹7324

Exercise 4.1

- 1. (a) 16: $16 \times 1 = 16$, $16 \times 2 = 32$, $16 \times 3 = 48$, $16 \times 4 = 64$, $16 \times 5 = 80$
 - (b) 18: $18 \times 1 = 18$, $18 \times 2 = 36$, $18 \times 3 = 54$, $18 \times 4 = 72$, $18 \times 5 = 90$
 - (c) 24: $24 \times 1 = 24$, $24 \times 2 = 48$, $24 \times 3 = 72$, $24 \times 4 = 96$, $24 \times 5 = 120$
 - (d) 70: 70 × 1 = 70, 70 × 2 = 140, 70 × 3 = 210, 70 × 4 = 280, 70 × 5 = 350
 - (e) $155 = 115 \times 1 = 115$, $115 \times 2 = 230$, $115 \times 3 = 345$, $115 \times 4 = 460$, $115 \times 5 = 575$

2. (a) $8 \times 126 = 1008$

- (b) $10 \times 241 = 2410$
- (c) $12 \times 100 = 1200$
- (d) $9 \times 2 = 18, 9 \times 4 = 36, 9 \times 6 = 54, 9 \times 8 = 72, 9 \times 10 = 90$
- (e) $11 \times 1 = 11$, $11 \times 3 = 33$, $11 \times 5 = 55$, $11 \times 7 = 77$, $11 \times 9 = 99$
- 3. (a) $19 \times 1 = 19$, $19 \times 2 = 38$, $19 \times 3 = 57$, $19 \times 4 = 76$, $19 \times 5 = 95$
 - (b) $15 \times 7 = 105$, $15 \times 8 = 120$, $15 \times 9 = 135$, $15 \times 10 = 150$, 15×11 , 165, $15 \times 12 = 180$, $15 \times 13 = 195$
 - (c) $17 \times 9 = 153$

- (d) $20 \times 1 = 20, 20 \times 2 = 40, 20 \times 3 = 60,$ $20 \times 4 = 80$
- 4. (a) No, as 246 is not completely divisible by 16

$$15$$

$$16) 246$$

$$-16 \checkmark$$

$$86$$

$$-80$$

$$6$$

(b) Yes, as 999 is completely dividible by 9

9

Exercise 4.2

1. (a) $1 \times 28 = 28$ $2 \times 14 = 28$ $7 \times 4 = 28$ Factors Factors of 28 are: 1, 2, 4, 7, 14 and 28 (b) $1 \times 40 = 20$ $2 \times 20 = 40$ $5 \times 8 = 40$ $10 \times 4 = 40$ Factors Factors of 40 are 1, 2, 5, 4, 8, 10, 20 and 40 (c) $1 \times 72 = 72$ $2 \times 36 = 72$ $3 \times 24 = 72$ $4 \times 18 = 72$ $6 \times 12 = 72$ $8 \times 9 = 72$ Factors Factors of 72: 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36 and 72

Answer Key

(d) $1 \times 120 = 120$ $2 \times 60 = 120$ $3 \times 40 = 120$ $4 \times 30 = 120$ $5 \times 24 = 120$ $6 \times 20 = 120$ $8 \times 15 = 120$ $10 \times 12 = 20$ Factors Factors of 120: 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60 and 120. 15 9 3 2. (a) 5)45 15)45 9)45 3)45 3 - 45 - 45 - 45 15 0 0 0 Factor of 45: 1, 3, 5, 9, 15 and 45 4 31 (b) 62 4)124 3)124 31)124 – 12↓ - 124 - 12 04 04 0 - 4 - 4 0 0 2 62) 124 - 124 0 Factor of 124 are 1, 2, 4, 31, 62 and 124 25 (c) 100 50 40 8)200 2) 200 4) 200 5) 200 - 16 20 2 20 00 40 00 00 - 40 5 4 2 40) 200 50) 200 100) 200 - 200 200 200 _ 0 0 0 Factors of 200 are 1, 2, 4, 5, 8, 40, 50 100 and 200

5

0

0

3.

4.

(d) 115	69	23
3)345	5)345	15)345
$-3\downarrow$	$-30\downarrow$	$-30 \downarrow$
04	45	45
_ 3 ▼	- 45	- 45
15	0	$\frac{10}{0}$
- 15		
0		
15	5	3.
23)345	69) 345	115) 345
_23↓	- 345	- 345
115	0	0
- 115		
0		
Factors of 345 an	re 1, 3, 5, 15	5, 23, 69, 115 and 345.
(a) Number itse	elf	
(b) 1		
(c) 2		
(d) 1		
(a) 15		
8)124		
- 8 🗸		
44		
40		
4		
		124 as 124 is not
totally divisi	ible by 8.	
(b) 23		
16)368		
- 32 🗸		
48		
48		
0		
Yes, 368 is a fa	ctor of 16	as 368 is completely
divisble by	16.	

(c)
$$15$$

 $24\overline{)360}$
 $-24\downarrow$
 120
 -120
 0

28

Mathematics-5

Yes, 360 is a factor of 24 as 360 is completely divisible by 24.

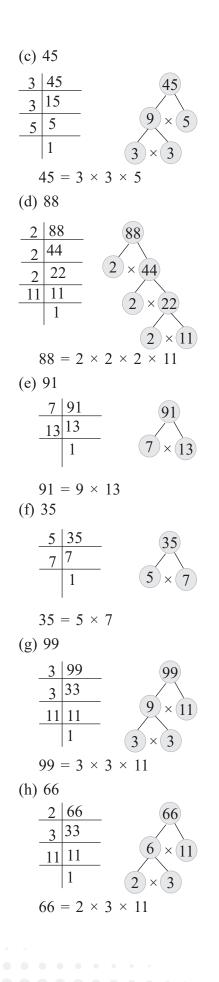
(d) 9
21) 193
$$-189$$

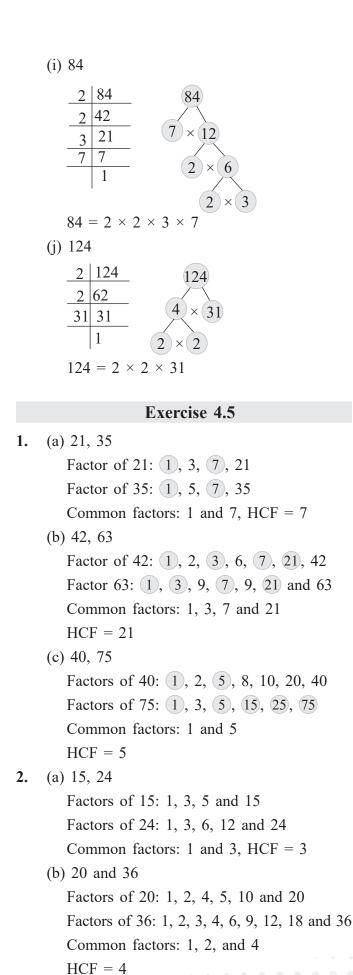
04

Number, 193 is not a fctor of 21 as 193 is not complete divisible by 21.

Exercise 4.3

1.

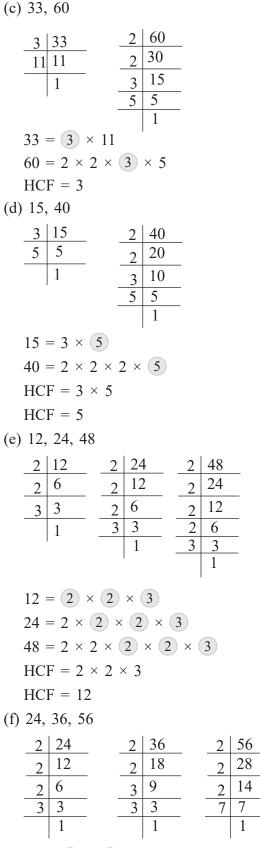

	No.	Number at ones place	Even number at ones place	Divisible by 2	0 or 5 at ones place	Divisible by 5	0 at one place	Divisible by 10
(a)	357	7	No	No	No	No	No	No
(b)	605	5	No	No	Yes	Yes	No	No
(c)	420	0	Yes	Yes	Yes	Yes	Yes	Yes
(d)	543	3	No	No	No	No	No	No
(e)	8842	2	Yes	Yes	No	No	No	No
(f)	2656	6	Yes	Yes	No	No	No	No
(g)	3295	5	No	No	Yes	Yes	No	No
(h)	7693	3	No	No	No	No	No	No


(h)	(g)	(f)	(e)	(d)	(c)	(b)	(a)	
7693	3295	2656	8842	543	420	605	357	No.
7+6+9+3=25	3 + 2 + 9 + 5 = 19	2+6+5+6=20	8 + 8 + 4 + 2 = 22	5+4+3=12	4 + 2 + 0 = 6	6 + 0 + 5 = 11	3 + 5 + 7 = 15	Sum of the digit
No	No	No	No	Yes	Yes	No	Yes	Is the sum divisible by 3
No	No	No	No	Yes	Yes	No	Yes	Divisible by 3
No	No	No	No	No	No	No	No	Is the sum divisible by 9
No	No	No	No	No	No	No	No	Divisible by 9
93	95	56	42	43	20	05	57	Ones and tens digits
No	No	Yes	No	No	Yes	No	No	Ones and tens digit divisible by 4
No	No	Yes	No	No	Yes	No	No	Divisible by 4
No	No	No	No	No	Yes	No	No	Divisible by 2 and 3
No	No	No	No	No	Yes	No	No	Divisible by 6

				Div	isible	by		
S.no	No.	2	3	4	5	6	9	10
(a)	357	×	\checkmark	×	×	×	×	×
(b)	605	×	×	×	\checkmark	×	×	×
(c)	420	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark
(d)	543	×	\checkmark	×	×	×	×	×
(e)	8842	\checkmark	×	×	×	×	×	×
(f)	2656	\checkmark	×	\checkmark	×	×	×	×
(g)	3295	×	×	×	\checkmark	×	×	×
(h)	7693	×	×	×	×	×	×	×

Exercise 4.4

	Exercise 4.4
1.	(a) 2
	(b) No
	(c) 2
	(d) 97
	(e) Yes
2.	(a) 97
	(b) $5 + 7 = 12$
	(c) 90, 91, 92, 93, 94, 95 and 96
3.	(a) $5 + 11 = 6$
	(b) $13 + 11 = 24$
	(c) $19 + 13 = 32$
	(d) $13 + 23 = 36$
	(e) $13 + 79 = 92$
	(f) $13 + 59 = 72$
4.	(a) 28
	2 28 28
	2 14
	777 4×7
	$28 = 2 \times 2 \times 7$
	(b) 42
	(42)
	321 6×7
	$\frac{7}{1}$ $\frac{7}{2}$ \times 3
	1
	$42 = 2 \times 3 \times 7$
70	Mathematics-5
30	



(c) 14 and 36 Factors of 14: 1, 2, 7 and 14 Factors of 36: 1, 2, 3, 4, 6, 9 Common factors: 1 and 2 HCF = 2(a) 33, 77 Factor of 33: (1), 3, (11) and 33 Factor of 77: (1), 7, (11) and 77 Common factors: 1 and 11 HCF = 11(b) 39, 65 Factors of 39: (1), (3), 13 and 39 Factors of 65: (1), 5, (13) and 65 Common factors: 1 and 13 HCF = 13(c) 45, 72 Factors of 45: (1), (3), (5), (9), 15 and 45. Factors of 72: (1), 2, (3), 4, 6, 8, (9), 12, 18, 24, 36 and 72 Common factors: 1, 3 and 9 HCF = 9(d) 20, 40, 70 Factors of 20: (1), 2, (5), (10) and 20 Factors of 40: (1), 2, (5), 8, (10, 20, 40 Factors of 70: (1), (5), 7, (10, 14, 35 and 70 Common factors: 1, 5 and 10 HCF = 10(e) 24, 40, 64 Factors of 24: (1), (2), 3, (4), 6, (8), 12 and 35 Factors of 40: (1), (2), 5, (8), 10, 20 and 40 Factors of 64: (1), (2), 4, (8), 16, 32 and 64 Common factors: 1, 2 and 8 HCF = 8

3.

Answer Key 31

(f) 15, 30, 75 Factors of 15: (1), (3), (5) and (15) Factors of 30: (1), (3), (5), 10, (15) and 30 Factors of 75: 1, 3, 5, 15, 25 and 75 Common factors: 1, 3, 5, 15 HCF = 15(g) 28, 42, 70 Factors of 28: (1), (2), 4, (7), (14) and 28 Factors of 42: (1), (2), 3, 6, (7), (14), 21 and 42 Factors of 70: (1), (2), 5, (7), 10, (14), 35 and 70 Common Factors: 1, 2, 7 and 14 HCF = 14(h) 21, 56, 35 Factor of 21: (1), 3, (7) and 21 Factor of 56: (1), 2, 4, (7), 8, 14, 28 and 56 Factor of 35: (1), 5, (7) and 35 Common factors: 1 and 7 HCF = 7**4.** (a) 14, 49 2 | 14 7 7 $14 = 2 \times (7)$ $49 = 7 \times (7)$ HCF = 7(b) 26, 52 2 26 26 13 13 13 13 1 1 $26 = 2 \times 13$ $52 = 2 \times (2) \times (13)$ $HCF = 2 \times 13$ $24 = 2 \times 2 \times 3$ = 26 $36 = 2 \times 2 \times 3 \times 3$

Mathematics-5

$$56 = 2 \times 2 \times 2 \times 7$$
HCF = 2 × 2
HCF = 4
(g) 22, 66, 99

$$\frac{2}{11} \frac{22}{11} \frac{2}{11} \frac{2}{3} \frac{66}{33}}{11} \frac{3}{33} \frac{99}{33}}{11} \frac{3}{11} \frac{3}{33}}{11} \frac{3}{11} \frac{3}{11}}{1}$$

$$22 = 2 \times 11$$

$$66 = 2 \times 3 \times 11$$

$$99 = 3 \times 3 \times 11$$
HCF = 11
(h) 48, 72, 96

$$\frac{2}{2} \frac{48}{2} \frac{2}{24} \frac{2}{2} \frac{72}{36}}{3} \frac{2}{2} \frac{96}{2} \frac{48}{2}}{212} \frac{2}{24} \frac{2}{2} \frac{12}{2}}{2} \frac{2}{6} \frac{3}{3} \frac{3}{3}}{1} \frac{2}{2} \frac{2}{6} \frac{6}{3} \frac{3}{3}}{1} \frac{3}{1} \frac{9}{2} \frac{2}{2} \frac{6}{3}}{3} \frac{3}{3} \frac{3}{3}}{1} \frac{2}{2} \frac{2}{6} \frac{6}{3} \frac{3}{3}}{1} \frac{1}{2} \frac{2}{2} \frac{6}{3}}{1} \frac{3}{3} \frac{3}{3} \frac{3}{3}}{1} \frac{1}{2} \frac{2}{2} \frac{6}{3} \frac{3}{3}}{1} \frac{1}{2} \frac{2}{2} \frac{6}{3} \frac{3}{3}}{1} \frac{1}{2} \frac{2}{2} \frac{6}{3} \frac{3}{3} \frac{3}{$$

(c) 49, 56 49) 56 (1 - 49 7) 49 (7)- 49 0 HCF of 49 and 56 = 7(d) 14, 28, 70 2 14) 28 - 28 0 HCF of 14 and 28 = 145 14) 70 ___70 0 HCF of 14, 28 and 70 = 14(e) 36, 54, 72 36) 54 (1 - 36 18) 36 (2 - 36 0 HCF of 36 and 54 is 18. 4 18) 72 - 72 0 HCF of 36, 54 and 72 is 18. (f) 28, 70 and 84 28) 70 (2 - 56 14) 28 (2 28 0

Answer Key 33

....

HCF of 28 and 70 is 14. 6 14) 84 - 84 0 HCF of 28, 70 and 84 is 14. (g) 64, 80, 112 64) 80 (1 $\frac{-64}{16}$ 64 (4 - 64 0 HCF of 64 and 80 is 16. 7 16)112 - 112 0 HCF of 64, 80 and 112 is 16. (h) 36, 72, 108 2 36)72 - 72 0 HCF of 36 and 72 is 36. 3 36)108 - 108 0 HCF of 36, 72 and 108 is 36. 6. (a) Number of Tomatoes: 32 Number of Capsicum: 48 Greatest number of baskets with each having same number of tomatoes and Capsicum = HCF of number of tomatoes

= HCF of 32 and 48

and Number of Capsicum

By long division method: By long divison method: $32\overline{)48(1)}$ -32 16)32(2) -32 0

- **Answer:** Greatest number of baskets with each having same number of tomatoes and capsicum is 16.
- (b) Number of plants in first row: 16Number of plants in second row: 24Number of plants in third row: 40Number of flowers should be planted to make the number of rows equal: HCF of 16, 24, 40

By long divison method: 16) 24 (1

- **Answer:** 8 Plants should be planted in each row to make the number of rows equal.
- (c) Number of pastries Pranav wants to distribute: 24

Number of chocolates Pranav wants to distribute: 16

Maximum number of packets he can make containing equal number of items = HCF of number of pastires and number of chocolate = HCF of 24 and 16

By long divison method: 16) 24 (1

HCF of 16 and 24 is 8.

Number of pastires in each packet:

$$\frac{\text{Total Number of pastires}}{\text{Number of packets}} = \frac{24}{8} = 3$$

Number of choclate in each packet:

 $\frac{\text{Total number of Choclates}}{\text{Number of packets}} = \frac{16}{8} = 2$ **Answer:** Pranav can make maximum 8 packets each containing 3 pastries and 2 chocolates.

Mathematics-5

Exercise 4.6 1. (a) 8, 16 Multiples of 8: 8, 16, 24, 32, 40, 48 Multiples of 16: 16, 32, 48, 64, 80, 94 ... Common multiples: 16, 32, 48 (b) 9, 18 Multiples of 9: 9, 18, 27, 36, 45, 54 ... Multiples of 18: (18), (36), (54), 72, 90, 108 ... Common multiples: 18, 36, 54 ... (c) 10, 20 Multiples of 10: 10, 20, 30, 40, 50, 60 ... Multiples of 20: 20, 40, 60, 80, 100 ... Common multiples: 20, 40, 60 ... (a) 8, 16 2. Multiples of 8: 8, 16, 24, 32, 40, 48... Multiples of 16: 16, 32, 48, 64, 80, 94 ... Common multiples: 16, 32, 48 (b) Multiples of 3: 3, (6), 9, (12), 15, (18) ... Multiples of 6: (6), (12, (18), 24, 30, 36 ... Common multiples: (6), 12, 18 ... (c) Multiples of 6: 6, 12, 18, 24, 30, 36 ... Multiples of 9: 9, 18, 27, 36, 45, 54 ... Common multiples: 18, 36 ... 3. (a) Multiples of 16: 16, 32, 48, 64, 80, 96, 112, 128, 144 Multiples of 18: 18, 36, 54, 72, 90, 108, 126, (144) Common multiples: 144 LCM = 144(b) Multiples of 10: 10, 20, 30, 40, 50, 60 Multiples of 15: 15, 30, 45, 60, 75 Common multiples: 30, 60 LCM = 30(c) Multiples of 12: 12, 24, 36, 48, 60, 72, 84, 96 Multiples of 16: 16, 32, 48, 64, 80, 96, 112, 128 Common multiples: 48, 96 LCM = 48

(d) Multiples of 24: 24, 48, 72, 96, 120, 144 Multiples of 36: 36, 72, 108, 144, 180, 216 Common multiples: (72), 144 LCM = 72(e) Multiples of 20: 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300 Multiples of 30: 30, 60, 90, 120, 150, 180, 210, 240, 270, 300 Multiples of 50: 50, 100, 150, 200, 250, 300 Common multiples: 300 LCM = 300(f) Multiples of 20: 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 230 Multiples of 32: 32, 64, 96, 128, 160, 192, 224, 256, 288, 320, ... Multiples of 40: 40, 80, 120, 160, 200, 240, 280, 320, ... Common multiples: 160, 320 LCM = 160(g) Multiples of 11: 11, 22, 33, 44, 55, 66, 72, 88, 99, 110, 121, 132, 143, 154, 165 Multiples of 22: 22, 44, 66, 88, 110, 132, 154 Multiples of 33: 33, 66, 99, 132, 165, 198, 231 Common Multiples: 66, 132 LCM = 66(h) Multiples of 12: 12, 24, 36, 48, 60, 72, 84, 96 Multiples of 16: 16, 32, 48, 64, 80, 96 Multiples of 32: 32, 64, 96, 128, 160 Common Multiples: 96 LCM = 96

Answer Key 35

4. (a) 14, 56

Largest number of times factor 2 occurs is 3. Largest number of times factor 7 occours is 1. LCM = $2 \times 2 \times 2 \times 7 = 56$

7

(b) 42, 70

2	42	 2	70
3	21	 5	35
7	7	7	7
	1		1

 $42 = 2 \times 3 \times 7 \qquad \qquad 70 = 2 \times 5 \times 7$

Largest number times factor 2, 3, 5 occours and 7 occours are 1

 $LCM = 2 \times 5 \times 7 \times 3 = 210$

(c)	2	32		2	72
	2	16		2	36
	2	8		2	18
	2	4		3	9
	2	2		3	3
		1			1
32 =	= 2	$\times 2 \times$	2 >	< 2	×2

 $72 = 2 \times 2 \times 2 \times 3 \times 3$

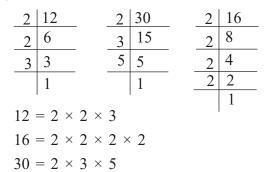
Maximum number of times factor 2 occours is 5 Maximum number of times factor 3 occours is 2. LCM = $2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3$

2

2 32

2

16


= 288

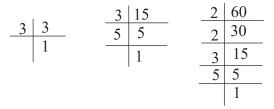
$$18 = 2 \times 3 \times 3$$
$$20 = 2 \times 2 \times 5$$
$$32 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$$

36 Mathematics-5

Maximum number of times factor 2 occours: 5 Maximum number of times factor 3 occours: 2 Maximum number of times factor 5 occours: 1 $LCM = 2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 3 \times 3 =$ 1440

(e) 12, 60, 30

Maximum number of times factor 2 occours is 4 Maximum number of times factor 3 occours is 1 Maximum number of times factor 5 occours is 1 $LCM = 2 \times 2 \times 3 \times 5 \times 2 \times 2$


$$LCM = 240$$

 $21 = 3 \times 7$ $36 = 2 \times 2 \times 3 \times 3$ $24 = 2 \times 2 \times 2 \times 3$

Maximum number of times factor 2 occours: 3 Maximum number of times factor 3 occours: 2 Maximum number of times factor 7 occurs:1

LCM = $2 \times 2 \times 2 \times 3 \times 3 \times 7 = 504$

(g) 3, 15, 60

 $3 = 1 \times 3$ $5 = 3 \times 5$ $60 = 2 \times 2 \times 3 \times 5$

Maximum number of times factor 3 occours: 1 Maximum number of times factor 2 occours: 2

Maximum number of times factor 5 occours: 1 LCM = $3 \times 2 \times 2 \times 5$

(h) 33, 55, 99

3 33	5 55	3	99
11 11	11 11	3	33
1	1	11	11
			1

 $33 = 3 \times 11$ $55 = 5 \times 11$ $99 = 3 \times 3 \times 11$

Maximum number of times factor 11 occours: 1 Maximum number of times factor 5 occours: 1 Maximum number of times factor 3 occours: 2 $LCM = 11 \times 5 \times 3 \times 3 = 495$

5. (a) 7, 21, 42

$$\frac{7 | 7, 21, 42}{3 | 1, 3, 6} \\
2 | 1, 1, 2 \\
1 \\
LCM = 7 \times 3 \times 2 = 42$$
(b) 9, 12, 30
$$\frac{2 | 9, 12, 30}{3 | 9, 6, 15} \\
3 | 9, 3, 15 \\
5 | 1, 1, 5 \\
1, 1, 1$$
LCM = 2 × 2 × 3 × 3 × 5 = 180

(c) 14, 52, 36 2 14, 52, 36 2 7, 26, 18 7 | 7, 13, 9 13 1, 13, 9 3 1, 1, 9 3 1, 1, 3 1, 1, 1 $LCM = 2 \times 2 \times 7 \times 13 \times 3 \times 3 = 3276$ (d) 6, 10, 16 2 6, 10, 16 2 3, 5, 8 2 3, 5, 4 $2 \mid 3, 5, 2$ 3 3, 5, 1 5 1, 5, 1 1, 1, 1 $LCM = 2 \times 2 \times 2 \times 2 \times 3 \times 5 = 240$ (e) 32, 16, 50 2 32, 16, 50 2 16, 8, 25 2 8, 4, 25 2 4, 2, 25 2 2, 1, 25 5 1, 1, 25 5 1, 1, 5 1, 1, 1 $LCM = 2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5 = 800$ (f) 14, 35, 49 2 14, 35, 49 7 7, 35, 49 7 | 1, 5, 7 5 1, 5, 1 1, 1, 1 $LCM = 2 \times 7 \times 7 \times 5 = 490$

Answer Key 37

6. (a) Clocks will ring together again at the LCM of intervals of both the clocks ringing = LCM of 15 minutes and 45 minutes = 45

 $LCM = 3 \times 3 \times 5 = 45$

Clock will ring together after 45 minutes, If they rang at 8am, then the clocks will rang again at 8am + 45 minutes = 8: 45am.

(b) Total number of Stickers = LCM of groups in which no stickers are left behind = LCM of 6, 10 and 12.

$$\frac{\begin{array}{c|c} 2 & 6, 10, 12 \\ \hline 3 & 3, 5, 6 \\ \hline 2 & 1, 5, 2 \\ \hline 5 & 1, 5, 1 \\ \hline 1, 1, 1 \\ \text{LCM} = 2 \times 3 \times 2 \times 5 \\ = 60 \end{array}$$

Answer: Total number of stickers are 60.

(c) Tubelight will flash together = LCM of both the tubelight flashing

= LCM of 30 and 36

= 180

Tubelights will flash together in 180 seconds

1 minutes = 60 second 1 second = $\frac{1}{60}$ minutes 180 seconds = $\frac{180}{60}$ minutes = 3 minutes Bell will ring again in 3 minutes

- (i) Second time they will flash together
 = 10: 45pm + 3 minutes
 = 10: 48pm
 (ii) Fifth time they will flash together
 - = 10: $45pm + 3 \times 4$ minutes
 - = 10:45 pm + 12 minutes
 - = 10: 57pm

Exercise 4.7

1. (a) HCF × LCM = Product of numbers

$$5 \times LCM = 525$$

 $LCM = \frac{525}{5}$
 $LCM = 105$
(b) HCF × LCM = Product of numbers
 11×66 = Product of numbers
Product of number = 726
(c) HCF × LCM = Product of numbers
HCF × 36 = 324
HCF = $\frac{324}{36}$
HCF = 9
2. LCM × HCF = Product of numbers

- LCM × HCF = Product of numbers
 LCM × 4 = 160
 LCM = 40
- 3. HCF × LCM = Product of numbers $5 \times 150 = 25 \times \text{Number}$ $750 = 25 \times \text{Number}$ Number = 30
- 4. HCF × LCM = Product of numbers HCF × 120 = 1800 HCF = $\frac{1800}{120}$ HCF = 15

Learning Updates

1. (a)
$$3 | 117$$

 $3 | 39$
 $13 | 13$
 117
 117
 $117 = 3 \times 3 \times 13$
(b) $2 | 114$
 $3 | 57$
 $19 | 19$
 $114 = 19 \times 3 \times 2$

	(c) $2 256$	(b) 36, 64, 14
	2 128	2 36, 64, 14
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	2 32	2 9, 16, 7
	2 16	2 9, 8, 7
	2 8	2 9, 4, 7
	2 4	2 9, 2, 7
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
		3 3, 1, 7
	$324 = 2 \times 2$	7 1, 1, 7
	(d) <u>2</u> 324	1, 1, 1
	2 162	$LCM = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 7 =$
	3 81	4032
	3 81 3 27	(c) 15, 25, 75
	3 9	3 15, 25, 75
	3 3	5 5, 25, 25
	1	5 1, 5, 5
	$324 = 2 \times 2 \times 3 \times 3 \times 3 \times 3$	
	(e) 2 162	1, 1, 1
		$LCM = 3 \times 5 \times 5 = 75$
	5	(d) 21, 28, 42
	$ \begin{array}{r} 3 & 27 \\ 3 & 9 \\ 3 & 3 \\ \overline{} & 3 \end{array} $	2 21, 28, 42
	$\frac{3}{3}$	2 21, 14, 21
	$\begin{array}{c c} 3 & 3 \\ \hline 1 \end{array}$	3 21, 7, 21
	$162 = 2 \times 3 \times 3 \times 3 \times 3$	7 7, 7, 7
		1, 1, 1
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		$LCM = 2 \times 2 \times 3 \times 7 = 84$
	5 125 5 25 5 5	(e) 28, 12, 96
	$ \begin{array}{r} 5 \\ 5 \\ $	2 28, 12, 96
	<u> </u>	2 14, 6, 48
	$750 = 2 \times 3 \times 5 \times 5 \times 5$	2 7, 3, 24
2.	(a) 72, 96, 12	2 7, 3, 12
	2 72, 96, 12	2 7, 3, 6
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 7, 3, 3
	2 18, 24, 3	7 7, 1, 1
	$\frac{2}{2}$ 9, 12, 3	1, 1, 1
	2 9, 6, 3	$LCM = 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 7 = 672$
	3 9, 3, 3	
	3 3, 1, 1	
	1, 1, 1	
	$LCM = 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 = 288$	
		Answer Key 39

.................

	(f) 12, 14, 16
	2 12, 14, 16
	2 6, 7, 8
	$ \begin{array}{r} \hline 2 & 6, 7, 8 \\ \hline 2 & 3, 7, 4 \\ \hline 2 & 3, 7, 2 \\ \hline 3 & 3 & 7, 1 \\ \hline \end{array} $
	2 3, 7, 2
	5 5, 7, 1
	7 1, 7, 1
	1, 1, 1
2	LCM = $2 \times 2 \times 2 \times 2 \times 3 \times 7 = 336$
3.	(a) 11, 77, 22 7
	11) 77
	_ 77
	0
	HCF of 11 and 77 is 11
	$\frac{2}{1}$
	11) 22
	$\frac{-22}{0}$
	HCF of 11, 77 and 22 is 11. (b) 15, 90, 60
	6
	15) 90
	- 90
	0
	HCF of 15 and 90 is 15 4
	15) 60
	<u>- 60</u>
	0
	HCF of 15, 90 and 60 is 15.
	(c) 30, 81, 51
	30) 81 (2
	$\frac{-60}{2}$
	21) 30 (1
	$\frac{-21}{9 21 (2)}$
	10
	3) 9 (3
	0

HCF of 30, 81 is 3 27 3) 51 - 3 21 - 21 0 HCF of 30, 81 and 51 is 3 (d) 24, 36, 30 24) 36 (1 12) 30 (2 ___24 - 24 12)24(2 6) 12 (2 _24 - 12 0 0 HCF of 24 and 36 is 12 HCF of 24, 36 and 30 is 6. (e) 13, 104, 78 8 6 13) 104 13) 78 __104 - 78 0 0 HCF of 13 and 104 is 13 HCF of 104 and 78 is 13 (f) 86, 90, 32 86) 90 (1 16 - 86 2)324) 86 (21 2↓ 8 12 6 - 12 4 0 2 4 (2)4 0 HCF of 86 and 90 is 2 HCF of 86, 90 and 32 is 2.

Mathematics-5

- 4. HCF × LCM = Product of 2 numbers $3 \times 45 = 9 \times \text{number}$ $135 = 9 \times \text{number}$ Number = $\frac{135}{9}$ Number = 15
- Maximum capacity of container which can measure can measure the petrol of both gallons, so that no petrol is left in either gallon = HCF of quantity of petrol in both gallons

$$20) \overline{36} (1) \\ -20 \\ 16) 20 (1) \\ -16 \\ 4) 16 (4) \\ -16 \\ -16 \\ 0 \\ = \text{HCF of 20 and 36}$$

Maximum capacity of container which can measure the petrol of both gallons, so that no petrol is left in either gallon is 4 litres.

6. HCF \times LCM = Product of 2 numbers

$$2 \times LCM = 56$$
$$LCM = \frac{56}{2}$$
$$LCM = 28$$

- 7. HCF × LCM = Product of 2 numbers HCF × 168 = 1008 HCF = $\frac{1008}{168}$ HCF = 6
- 8. Length of first rope: 16m

Length of second rope: 24m

Maximum length of each piece of equal length = HCF of length of first rope & second rope

$$\begin{array}{r}
16) 24 (1 \\
-16 \\
\hline
8) 16 (2 \\
-16 \\
\hline
0
\end{array}$$

HCF of 16 and 24

Answer: Maximum length of each piece of equal length is 8m.

9. Least number of stones required so that equal heaps of 15, 20 and 30 stones can be made = LCM of 15, 20 and 30 = 60

 $LCM = 2 \times 2 \times 3 \times 5 = 60$

- **Answer:** 60 Stones are least required so that equal heaps of 15, 20 or 30 stones can be made.
- 10. Time service A arrives in: 15 minutes
 Time Service B arrives in: 20 minutes
 Time Service C arrives in: 30 minutes
 Time all bases will arrive to athem 10
 - Time all buses will arrive together: LCM of 15, 20, 30 = 60
 - All buses will arrive together in 60 minutes/ 1 hour

 $LCM = 2 \times 2 \times 3 \times 5 = 60$

Bus again will arrive in 9: 00 am + 60 minutes/1 hour

= 10: 00am.

Answer Key 41

	Multiple Choice Questions
1.	LCM of 30 and 40
	2 30, 40
	2 15, 20
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	5 15, 5 5 5, 5
	$\frac{3}{1,1}$
	$= 2 \times 2 \times 2 \times 3 \times 5$
	= 120
	(a) 120
2.	(b) 1
3.	(d) Product
4.	HCF of 448 and 616
	$448\overline{)616}(1 = 56 \text{ (c) } 56$
	- 448
	168) 448(2
	$\frac{-336}{112}$) 168 (1
	- 112
	56) 112 (2
	- 112
_	0
5.	2176
	$ \frac{288}{244} $
	2 22
	11 11
	$176 = 2 \times 2 \times 2 \times 2 \times 11$
	Answer: (d) $2 \times 2 \times 2 \times 2 \times 11$
	Skills Check

 Least number which when divided by 100, 12,0 or 150 leaves a remainder 5 = LCM of 100, 120, 150 + Remainder
 = 600 + 5

= 605

42

2 100, 120, 150 50, 60, 75 2 25, 30, 75 2 25, 15, 75 3 5 25, 5, 25 5, 1, 5 5 1, 1, 1 $LCM = 2 \times 2 \times 2 \times 3 \times 5 \times 5$ = 600Answer: Least number which when divided by 100, 120 or 150 leaves a remainder 5 is 605. (a) Total number of boys: 32 Total number of girls: 40 Greatest number of teams that can participate in the function with same number of girls and boys = HCF of total number of boys and total number of girls = HCF of 32 and 40 = 8 32) 40 (1 - 32 8) 32 (4 - 32 0 Answer: Greatest number of teams that can participate in the function with same number of girls and boys are 8. (b) $32 \div 8 = 4$

 $40 \div 8 = 5$

2.

Therefore, there are five girls and four boys in each team.

Mathematics-5

5 Fractions Get Started 1. Remaining part of the cake = Total cake – [Part of cake Ruhi want + Part of cake Suchi want] = $1 - \left[\frac{4}{12} + \frac{6}{12}\right] = 1 - \left(\frac{4+6}{12}\right) = 1 - \frac{10}{12}$ $\frac{12-10}{12} = \frac{2}{12}$ Answer: $\frac{2}{12}$ of cake is left. 2. 1 hour = 60 minutes (a) 10 minutes = $\frac{10}{60}$ (b) 30 minutes = $\frac{30}{60}$ (c) 45 minutes = $\frac{45}{60}$ (d) 55 minutes = $\frac{55}{60}$

Exercise 5.1

- 1. Like fractions: Fraction having the same denominator
 - (a) $\frac{4}{7}, \frac{5}{7}$

(c)
$$\frac{3}{8}, \frac{7}{8}$$

(d)
$$\frac{9}{13}, \frac{11}{13}$$

- 2. Unit Fraction: Fractions with numerator as 1 $\frac{1}{3}, \frac{1}{7}$
- **3.** Unlike fraction: Fractions having different denominators

(a)
$$\frac{1}{5}$$
, $\frac{1}{8}$ (c) $\frac{4}{7}$, $\frac{4}{9}$

4. proper fractions: Fractions with denominator greater than the numerator

(a)
$$\frac{2}{3}$$
 (c) $\frac{5}{8}$ (d) $\frac{9}{11}$

5. Improper fraction: Fractions with numerator greater than the denominator.

(b)
$$\frac{9}{5}$$
 (c) $\frac{11}{7}$ (d) $\frac{9}{1}$

6. (a)
$$4\frac{3}{8} = \frac{8 \times 4 + 3}{8} = \frac{32 + 3}{8} = \frac{35}{8}$$

(b) $4\frac{2}{3} = \frac{4 \times 3 + 2}{3} = \frac{12 + 2}{3} = \frac{14}{3}$
(c) $5\frac{3}{7} = \frac{7 \times 5 + 3}{7} = \frac{35 + 3}{7} = \frac{38}{7}$
(d) $15\frac{5}{8} = \frac{8 \times 15 + 5}{8} = \frac{120 + 5}{8} = \frac{125}{8}$
7. (a) $\frac{15}{4}$
Denominator 3 Whole number
 $4 = \frac{12}{3}$ Whole number
 $4 = \frac{-12}{3}$ Whole number
 $4 = \frac{-15}{04}$ Whole number
 $4 = \frac{-15}{04}$ Whole number
 $4 = \frac{-24}{02}$ Whole number
 $4 = \frac{-24}{14}$ Whole number

Answer Key 43

j o o

Mathematics-5

44

••••

(b)
$$\frac{3}{8}, \frac{9}{24}; \frac{3}{8} \rightarrow \frac{9}{24}$$

 $3 \times 24 = 72, 8 \times 9 = 72$
 $72 = 72$
Since, the products are equal, the fractions $\frac{3}{8}$
and $\frac{9}{24}$ are equivalent fractions.
(c) $\frac{21}{45}, \frac{35}{75}; \frac{21}{45} \rightarrow \frac{35}{75}$
 $= 21 \times 75 = 1575$
 $= 35 \times 45 = 1575$
Since, the products are equal, the fractions
 $\frac{21}{45}$ and $\frac{35}{75}$ are equivalent fractions.
(d) $\frac{75}{50}, \frac{15}{10}; \frac{75}{50} \rightarrow \frac{15}{10}$
 $75 \times 10 = 750$
Since, the products are equal, the fractions
 $\frac{75}{50}$ and $\frac{15}{10}$ are equivalent fractions.
(e) $\frac{4}{10}, \frac{8}{20}; \frac{4}{10} \rightarrow \frac{8}{20}$
 $4 \times 20 = 80$
 $8 \times 10 = 80$
 $80 = 80$
Since, the product are equal, the fractions $\frac{4}{10}$
and $\frac{8}{20}$ are equivalent fractions
(f) $\frac{14}{6}, \frac{16}{24}; \frac{14}{6} \rightarrow \frac{16}{24}$
 $= 14 \times 24 = 336, 16 \times 6 = 96$
 $336 \neq 16$
Since, the products are not equal, the fraction
 $\frac{4}{6}$ and $\frac{16}{24}$ are non – equivalent fractions.
4. (a) $\frac{5 \times 4}{7 \times 4} = \frac{20}{128}$
(b) $\frac{5 \times 7}{7 \times 7} = \frac{135}{149}$
(c) $\frac{5 \times 7}{7 \times 7} = \frac{35}{149}$

1. (a)
$$\frac{10 \div 5}{15 \div 5} = \frac{2}{3}$$

(b) $\frac{28 \div 7}{49 \div 7} = \frac{4}{7}$

(c)
$$\frac{36 \div 18}{54 \div 118} = \frac{2}{3}$$

2. (a) $\frac{8}{24}$
HCF of 8 and 24
By long divison method
 $3 = \frac{8}{24} = \frac{2}{24}$
 $\frac{-24}{0}$
HCF = 8
 $\frac{8}{24} = \frac{8 \div 8}{24 \div 8} = \frac{1}{3}$
(b) $\frac{16}{34}$, HCF of 16 and 34
By long division method
 $16\overline{)}$ 34 (2
 $-\frac{32}{2}$) 16 (8
 $\frac{-16}{0}$
HCF = 2
 $\frac{16}{34} = \frac{16 \div 2}{34 \div 2} = \frac{8}{17}$
(c) $\frac{15}{39}$, HCF of 15 and 39
By long divison method
 $15\overline{)}$ $\overline{39}$ (2
 $\frac{-30}{9}$) 15 (1
 $\frac{-9}{6}$) 9 (1
 $\frac{-6}{3}$) $\frac{6}{2}$ (2
 $\frac{-6}{0}$
HCF = 3
HCF = $\frac{15}{39} = \frac{15 \div 3}{39 \div 3} = \frac{5}{13}$

(d) $\frac{18}{45}$, HCF of 18 and 45 By long divison method 18) 45 (2 - 36 9) 18 (2 - 18 $\frac{18}{45} = \frac{18 \div 9}{45 \div 9} = \frac{2}{5}$ HCF = 9(e) $\frac{52}{65}$, HCF of 52 and 65 52) 65 (2 $\frac{-52}{13}$ 65 (5 - 65 0 HCF = 13 $\frac{52}{65} = \frac{52 \div 13}{65 \div 13} = \frac{4}{5}$ **Exercise 5.4** (a) $\frac{3}{4}, \frac{4}{5}$ LCM of 4 and 5 is 20. 2 4, 5 2 2, 5 5 1, 5 1, 1 $LCM = 2 \times 2 \times 5$ = 20To make given fractions to equivalent fractions with denominators 40. $\frac{3 \times 10}{4 \times 10} = \frac{30}{40}, \frac{4 \times 10}{5 \times 10} = \frac{40}{50}$ Since, 40 > 30 [Comparing numerators] Hence, $\frac{4}{5} > \frac{3}{4}$ (b) $\frac{2}{5}$, $\frac{3}{7}$ LCM of 5 and 7 $LCM = 5 \times 7 = 35$

1.

Answer Key 45

To, make given fraction to equivalent fraction with denominators 35.

2.

$$\frac{2 \times 7}{5 \times 7} = \frac{14}{35}, \ \frac{3 \times 5}{7 \times 5} = \frac{15}{35}$$

Since, 14 < 15 [comparing numerators]

Hence,
$$\frac{2}{5} < \frac{3}{7}$$

(c) $2\frac{2}{8} = \frac{8 \times 2 + 2}{8} = \frac{16 + 2}{8} = \frac{18}{8}$
 $4\frac{1}{3} = \frac{3 \times 4 + 1}{3} = \frac{12 + 1}{3} = \frac{13}{3}$

LCM of 3 and 8 is 24

$$\begin{array}{r}
 3 & 3, 8 \\
 2 & 1, 8 \\
 \hline
 2 & 1, 4 \\
 \hline
 2 & 1, 2 \\
 \hline
 1, 1
 \end{array}$$

 $LCM = 3 \times 2 \times 2 \times 2 = 24$

To make, given fraction to equivalent fractions with denominator 24. $\frac{18 \times 3}{8 \times 3} = \frac{54}{24}, \frac{13 \times 8}{3 \times 8} = \frac{104}{24}$

Since,
$$54 < 104$$
 [Comparing numberator]
 $\therefore \frac{18}{8} < \frac{13}{3}$
Hence, $2\frac{2}{8} < 4\frac{1}{3}$
(d) $2\frac{3}{11}$, $3\frac{2}{8}$
 $2\frac{3}{11} = \frac{11 \times 2 + 3}{11} = \frac{22 + 3}{11} = \frac{25}{11}$
 $3\frac{2}{8} = \frac{8 \times 3 + 2}{8} = \frac{24 + 2}{8} = \frac{26}{8}$
LCM of $\frac{25}{11}$ and $\frac{26}{8}$ is 88
 $\frac{11|11, 8}{2|1, 8|}$

$$\boxed{\begin{array}{c|c}
 2 & 1, 4 \\
 2 & 1, 2 \\
 \hline
 1, 1 \\
 LCM = 11 \times 2 \times 2 \times 2 = 88
 \end{array}$$

To make, given fraction to equivalent fractions with denominator 88. 25×8 , 200, 26×11 , 286

 $\frac{25 \times 8}{11 \times 8} = \frac{200}{88}, \ \frac{26 \times 11}{8 \times 11} = \frac{286}{88}$

Since, 200 < 286 [Comparing numerator]

$$\therefore \frac{200}{88} < \frac{286}{88}$$

46 Mathematics-5

Hence,
$$2\frac{3}{11} < 3\frac{2}{8}$$

(a) $\frac{4}{5}, \frac{3}{7}$
Cross multiplying $\frac{4}{5}$ and $\frac{3}{7}$
 $\frac{4}{5} \rightarrow \frac{3}{7}$
 $= 5 \times 3 = 15$
 $4 \times 7 = 28$
 $28 > 15$
Hence, $\frac{4}{5} > \frac{3}{7}$
(b) $\frac{3}{11}, \frac{3}{9}$
Cross multiplying $\frac{3}{11}$ and $\frac{3}{7}$
 $\frac{3}{11} \rightarrow \frac{3}{7}$
 $= 3 \times 7 = 21$
 $= 3 \times 11 = 33$
 $21 < 33$
Hence, $\frac{3}{11} < \frac{3}{9}$
(c) $2\frac{4}{5}, 2\frac{4}{13}$
 $2\frac{4}{5} = \frac{5 \times 2 + 4}{5} = \frac{10 + 4}{5}$
 $= \frac{14}{5}$
 $2\frac{4}{13} = \frac{13 \times 2 + 4}{13} = \frac{26 + 4}{13} = \frac{30}{13}$
Cross multplying $\frac{14}{5}$ and $\frac{30}{13}$
 $\frac{14}{5} \rightarrow \frac{30}{13}$
 $14 \times 13 = 182$
 $30 \times 5 = 150$
 $182 > 150$
 $80, \frac{14}{5} > 3\frac{1}{13}$
Hence, $2\frac{4}{5} > 2\frac{4}{13}$
(d) $5\frac{1}{6}$ or $5\frac{1}{4}$
 $5\frac{1}{6} = \frac{6 \times 5 + 1}{6} = \frac{30 + 1}{6} = \frac{31}{6}$
 $5\frac{1}{4} = \frac{4 \times 5 + 1}{4} = 20 + 1}{4} = \frac{21}{4}$
Cross-multiplying $\frac{31}{6}$ and $\frac{21}{4}$
 $\frac{31}{6} \rightarrow \frac{21}{4}$
 $31 \times 4 = 124$

$$21 \times 6 = 126$$

$$124 > 126$$

$$so, \frac{31}{6} < \frac{21}{4}$$
Hence, $5\frac{1}{6} < 5\frac{1}{4}$
3. (a) $\frac{3}{8} \ge \frac{2}{8} [3 > 2]$
(b) $\frac{4}{11} \le \frac{5}{11} [4 < 5]$
(c) $\frac{2}{13} \le \frac{4}{11}$
Cross multiplying $\frac{2}{13}$ and $\frac{4}{11}$

$$\frac{2}{13} \checkmark \frac{4}{11}$$

$$= 2 \times 11 = 22$$

$$13 \times 4 = 52$$

$$22 < 52$$

$$\frac{2}{23} < \frac{4}{11}$$
(d) $\frac{5}{10} \ge \frac{4}{20}$
Cross multiplying $\frac{5}{10}$ and $\frac{4}{20}$

$$\frac{5}{10} \checkmark \frac{4}{20}$$

$$= 5 \times 20 = 100$$

$$= 4 \times 10 = 40$$

$$100 > 40$$

$$\frac{5}{10} > \frac{4}{20}$$
4. (a) $\frac{9}{5}, \frac{4}{5}, \frac{15}{5}, \frac{12}{5} = \left[1\frac{2}{5} - 5 \times 1 + 2 - 5 + 2 - \frac{7}{5}\right]$

$$\frac{4}{5} < \frac{7}{5} < \frac{9}{5} < \frac{15}{5} [4 < 7 < 9 < 15]$$
Hence, $\frac{4}{5} < \frac{7}{5} < \frac{9}{5} < \frac{15}{5}$
(b) $\frac{44}{25}, 6\frac{6}{25}, 1\frac{20}{25}, \frac{65}{25} < \frac{120}{25} = \frac{25 \times 1 + 20}{25}$

$$= \frac{25 + 20}{25} = \frac{45}{25}$$

$$\frac{44}{25} < \frac{45}{25} < \frac{65}{25} < \frac{156}{25} (6\frac{6}{25} = \frac{25 \times 6 + 6}{25})$$

$$= \frac{150 + 6}{25} = \frac{156}{25}$$

$$= \frac{150 + 6}{25} < \frac{120}{25} < \frac{65}{25} < 6\frac{6}{25}$$

Answer Key 47

.............

$$\frac{4}{5} = \frac{4 \times 8}{5 \times 8} = \frac{32}{40}, \ \frac{3 \times 5}{8 \times 5} = \frac{15}{40}$$
$$\frac{32}{40} > \frac{15}{40} \ [32 > 15]$$
Therefore, $\frac{4}{5} > \frac{3}{8}$ Answer: Rohit has more sanitizer.

Exercise 5.5

1. (a) $\frac{3+2}{15} = \frac{5}{15}$ (b) $\frac{2}{8} + \frac{3}{8} = \frac{2+3}{8} = \frac{5}{8}$ (c) $\frac{4+5}{9} = \frac{9}{9}$ (d) $\frac{3}{14} + \frac{6}{14} = \frac{3+6}{14} = \frac{9}{14}$ 2. (a) $\frac{3}{7} + \frac{5}{14}$ LCM of 7 and 14 is 14. Making denominators as 14 $\frac{3 \times 2}{7 \times 2} = \frac{6}{14}, \frac{5 \times 1}{14 \times 1} = \frac{5}{14}$ $\frac{6}{14} + \frac{5}{14} = \frac{6+5}{14} = \frac{11}{14}$ (b) $\frac{5}{6} + \frac{8}{12}$ LCM of 6 and 12 is 12 $LCM = 2 \times 2 \times 3 = 12$ Making denominators as 14. $\frac{5 \times 2}{6 \times 2} = \frac{10}{12}, \frac{8 \times 1}{12 \times 1} = \frac{8}{12}$ $\frac{10}{12} + \frac{8}{12} = \frac{10+8}{12} = \frac{18}{12}$ (c) $2 + 1\frac{1}{6} + \frac{1}{8}$ $1\frac{1}{6} = \frac{6 \times 1 + 1}{6} = \frac{6 + 1}{6} = \frac{7}{6}$ $2 = \frac{2}{1}$ LCM of 1, 6 and 8 is 24.

1. 1. 1 $LCM = 2 \times 2 \times 2 \times 3 = 24$ To make denominator as 24. $\frac{2 \times 24}{1 \times 24} = \frac{48}{24}, \frac{7 \times 4}{6 \times 4} = \frac{28}{24}, \frac{1 \times 3}{8 \times 3} = \frac{3}{24}$ $\frac{48}{24} + \frac{28}{24} + \frac{3}{24}$ $=\frac{48+28+3}{24}=\frac{76+3}{24}=\frac{79}{24}$ (d) $2\frac{5}{6} + 1\frac{2}{3} + \frac{1}{4}$ $\left(2\frac{5}{6} = \frac{6 \times 2 + 5}{6} = \frac{12 + 5}{6} = \frac{17}{6}\right)$ $\left(1\frac{2}{3} = \frac{3 \times 1 + 2}{3} = \frac{3 + 2}{3} = \frac{5}{3}\right)$ LCM 6, 3, and 4 is 12. $LCM = 3 \times 2 \times 2 = 12$ To make denominator as 12. $\frac{17 \times 2}{6 \times 2} = \frac{34}{12}, \frac{5 \times 4}{3 \times 4} = \frac{20}{12}, \frac{1 \times 3}{4 \times 3} = \frac{3}{12}$ $\frac{34}{12} + \frac{20}{12} + \frac{3}{12} = \frac{34 + 20 + 3}{12} = \frac{57}{12}$ (e) $2\frac{1}{5} + 3 + 1\frac{4}{9}$ $\left(2\frac{1}{5} = \frac{5 \times 2 + 1}{5} = \frac{10 + 1}{5} = \frac{11}{5}\right)$ $\left(3=\frac{3}{1}\right)$ LCM of 1, 5, and 9 is 45 $\left(1\frac{4}{9} = \frac{9 \times 1 + 4}{9} = \frac{9 + 4}{9} = \frac{13}{9}\right)$ $5 \times 3 \times 3 = 45$

48 Mathematics-5

To make denominators as 45. $\frac{11 \times 9}{5 \times 9} = \frac{.99}{.45}, \frac{3 \times 45}{1 \times 45} = \frac{.135}{.45}, \frac{.13 \times 5}{.9 \times 5} = \frac{.65}{.45}$ $\frac{99}{45} + \frac{135}{45} + \frac{65}{45} = \frac{99 + 135 + 65}{45} = \frac{299}{45}$ (f) $3\frac{7}{8} + 5\frac{5}{12} + 2\frac{3}{4} \left(3\frac{7}{8} - \frac{8 \times 3 + 7}{8} - \frac{31}{8} \right)$ $\left(5\frac{5}{12} = \frac{12 \times 5 + 5}{12} = \frac{60 + 5}{12} = \frac{65}{12}\right)$ $\left(2\frac{3}{4} = \frac{4 \times 2 + 3}{4} = \frac{8 + 3}{4} = \frac{11}{4}\right)$ LCM of 8, 12 and 4 is 24 2 8, 12, 4 2 4, 6, 2 1. 1. 1 $LCM = 2 \times 2 \times 2 \times 3 = 24$ $\frac{31 \times 3}{8 \times 3} = \frac{93}{24}, \frac{65 \times 2}{12 \times 2} = \frac{130}{24}, \frac{11 \times 6}{4 \times 6} = \frac{66}{24}$ $\frac{93}{24} + \frac{130}{24} + \frac{66}{24} = \frac{93 + 130 + 66}{24} = \frac{289}{24}$ (g) $5\frac{5}{6} + 1\frac{3}{8} + 4\frac{7}{12}$ $\left(5\frac{5}{6} = \frac{60 \times 5 + 5}{6} = \frac{30 + 5}{6} = \frac{35}{6}\right)$ $\left(5\frac{3}{8} = \frac{8 \times 1 + 3}{8} = \frac{8 + 3}{8} = \frac{11}{18}\right)$ $\left(4\frac{7}{12} = \frac{12 \times 4 + 7}{12} = \frac{48 + 7}{12} = \frac{55}{12}\right)$ LCM of 6, 8 and 12 is 24 2 6, 8, 12 2 3, 4, 6 1. 1. 1 $LCM = 2 \times 2 \times 2 \times 3 = 24$ $\frac{11 \times 3}{8 \times 3} = \frac{33}{24}, \frac{35 \times 4}{6 \times 4} = \frac{140}{24}, \frac{55 \times 2}{12 \times 2} =$ $\frac{110}{24} = \frac{33 + 140 + 110}{24} = \frac{283}{24}$ (h) $12\frac{2}{5} + 13\frac{1}{7} + 2$ $\left(12\frac{2}{5} = \frac{5 \times 12 + 2}{5} = \frac{-62}{5}\right)$

 $\left(13\frac{1}{7} = \frac{7 \times 13 + 1}{7} = \frac{91 + 1}{7} = \frac{92}{7}\right)$ $\left(2=\frac{2}{1}\right)$ LCM 5, 7 and is 35. LCM: $5 \times 7 = 35$ To make denominator as 35 $\frac{62 \times 7}{5 \times 7} = \frac{434}{35}, \ \frac{92 \times 5}{7 \times 5} = \frac{460}{35}, \ \frac{2 \times 35}{1 \times 35}$ $=\frac{70}{35}$ $\frac{434}{35} + \frac{460}{35} + \frac{70}{35} = \frac{434 + 460 + 70}{35} = \frac{964}{35}$ (i) $8\frac{11}{14} + 3\frac{8}{21} + 1\frac{1}{7}$ $\left(8\frac{11}{14} = \frac{14 \times 8 + 11}{14} = \frac{112 + 11}{14}, \frac{62}{5}\right)$ $\left(3\frac{8}{21} = \frac{21 \times 3 + 8}{21} = \frac{63 + 8}{21}, \frac{71}{21}\right)$ $\left(1\frac{1}{7} = \frac{7 \times 1 + 1}{7} = \frac{7 + 1}{7}, \frac{8}{7}\right)$ LCM of 14, 21, and 7 is 42 $LCM = 2 \times 3 \times 7 = 42$ $\frac{123 \times 3}{14 \times 3} = \frac{369}{42}, \frac{71 \times 2}{21 \times 2} = \frac{142}{42}, \frac{8 \times 6}{7 \times 6} = \frac{48}{42}$ $\frac{369}{42} + \frac{142}{42} + \frac{48}{42} = \frac{369 + 142 + 48}{42} = \frac{559}{42}$ (a) Weight of empty basket = $1\frac{4}{5}$ kg = $\frac{5 \times 1 + 4}{5} = \frac{5 + 4}{5} = \frac{9}{5} \text{kg}$ Weight of Oranges: $2\frac{1}{3}\text{kg} = \frac{3 \times 2 + 1}{3} = \frac{6 + 1}{3} = \frac{7}{3}\text{kg}$ Weight of basket and Oranges together: $\frac{9}{5}$ kg + $\frac{7}{3}$ [LCM of 5 and 3 is 15]

3.

Answer Key 49

 $\mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O}$

To make denominator as 15 $\frac{9 \times 3}{5 \times 3} = \frac{27}{15}, \frac{7 \times 5}{3 \times 5} = \frac{35}{15}$ $=\frac{27}{15}+\frac{35}{15}=\frac{62}{15}$ Answer: Weight of basket and Oranges together is $\frac{62}{15}$ kg (b) Length of cloth for my shirt: $1\frac{1}{2}$ m $= \frac{2 \times 1 + 1}{2} = \frac{2 + 1}{2} = \frac{3}{2}$ Length of cloth for my brother's shirt: $1\frac{2}{3}$ m = $\frac{3 \times 1 + 2}{3} = \frac{3 + 2}{3} = \frac{5}{3}$ Total cloth purchased = $1\frac{1}{2}m + 1\frac{2}{3}m$ $=\frac{3}{2}+\frac{5}{3}$ [LCM of 2 and 3 is 6] $LCM = 2 \times 3 = 6$ To make denominators as 6. $\frac{3 \times 6}{2 \times 6} = \frac{18}{12}, \frac{5 \times 4}{3 \times 4} = \frac{20}{12}$ $\frac{18}{12} + \frac{20}{12} = \frac{18 + 20}{12} = \frac{38}{12}$ m Answer: Total cloth purchased is of $\frac{38}{12}$ m (c) Length of cloth purchased by Anita: $6\frac{3}{4}$ = $\frac{4 \times 6 + 3}{4} = \frac{24 + 3}{4} = \frac{27}{4}$ Length of cloth purchased by Radhika: $8\frac{1}{2}$ m = $\frac{2 \times 8 + 1}{2} = \frac{16 + 1}{2} = \frac{17}{2}$ Length of cloth purchased by Ishika: $5\frac{3}{8}$ m $= \frac{8 \times 5 + 3}{8} = \frac{40 + 3}{8} = \frac{43}{8}$ Total cloth purchased = $6\frac{3}{4}m + 8\frac{1}{2}m + 5\frac{3}{8}m$ $=\frac{27}{4}+\frac{17}{2}+\frac{43}{8}$ [LCM of 2, 4, and 8 is 8] $LCM = 2 \times 2 \times 2 = 8$ To make denominators as 8

 $\frac{27 \times 2}{4 \times 2} = \frac{54}{8}, \frac{17 \times 4}{2 \times 4} = \frac{68}{8}, \frac{43 \times 1}{8 \times 1} = \frac{43}{8}$ $\frac{54}{8} + \frac{68}{8} + \frac{43}{8} = \frac{165}{8}$ Answer: Total $\frac{165}{8}$ m of cloth is purchased. (d) Thickness of first cardboard: $3\frac{5}{16}$ cm $= \frac{16 \times 3 + 5}{16} = \frac{48 + 5}{16} = \frac{53}{16}$ Thickness of second cardboard: $4\frac{3}{8}$ cm $=\frac{8 \times 4 + 3}{8} = \frac{32 + 3}{8} = \frac{35}{8}$ Combined thickness of the Cardboards: Thickness of first Cardboard + Thickness of second Cardboard $= 3\frac{5}{16}$ cm $+ 4\frac{3}{8}$ cm $=\frac{53}{16}+\frac{35}{8}$ [LCM of 16 and 8 is 16] To make denominators equal. $\frac{53 \times 1}{16 \times 1} = \frac{53}{16}, \ \frac{35 \times 2}{8 \times 2} = \frac{70}{16}$ $\frac{53}{16} + \frac{70}{16} = \frac{53 + 70}{16} = \frac{123}{16}$ cm **Exercise 5.6** 1. (a) $\frac{3-2}{7} = \frac{1}{7}$ (b) $\frac{9}{10} - \frac{4}{10} = \frac{9-4}{10} = \frac{5}{10}$ (c) $\frac{13}{9} - \frac{9}{9} = \frac{13 - 9}{9} = \frac{4}{9}$ (d) $\frac{14}{11} - \frac{5}{11} = \frac{14 - 5}{11} = \frac{9}{11}$ **2.** (a) $\frac{17}{44} - \frac{2}{11}$ [LCM of 44 and 11 is 44]

Mathematics-5

To make denominator 44. $\frac{17 \times 1}{44 \times 1} = \frac{17}{44}, \ \frac{2 \times 4}{11 \times 4} = \frac{8}{44}$ $\frac{17}{44} - \frac{8}{44} = \frac{17 - 8}{44} = \frac{9}{44}$ (b) $\frac{3}{4} - \frac{5}{12}$ LCM of 4 and 12 is 12 $LCM = 2 \times 2 \times 3 = 12$ To make denominator 12; $\frac{3 \times 3}{4 \times 3} = \frac{9}{12}, \frac{5 \times 1}{12 \times 1} = \frac{5}{12}$ $\frac{9}{12} - \frac{5}{12} = \frac{9-5}{12} = \frac{4}{12}$ (c) $18\frac{4}{5} - 7\frac{9}{10}$ $\left(18\frac{4}{5} = \frac{5 \times 18 + 4}{5} = \frac{90 + 4}{5} = \frac{94}{5}\right)$ $\left(7\frac{9}{10} = \frac{10 \times 7 + 9}{10} = \frac{70 + 9}{10} = \frac{79}{10}\right)$ LCM of 5 and 10 is 10 2 5, 10 $\begin{array}{c} \text{LCM} = 2 \times 5 = 10\\ \underline{94 \times 2}\\ \overline{5 \times 2} = \underline{188}\\ 10\\ \end{array}, \ \underline{79 \times 10}\\ 10 \times 1 = \underline{79}\\ 10\\ \end{array}$ $\frac{188}{10} - \frac{79}{10} = \frac{188 - 79}{10} = \frac{109}{10}$ (d) $8\frac{3}{8} - 3\frac{1}{5}$ $\left(3\frac{3}{8} = \frac{8 \times 8 + 3}{8} = \frac{-64 + 3}{8} = \frac{-67}{8}\right)$ $\left(3\frac{1}{5} = \frac{5 \times 3 + 1}{5} = \frac{15 + 1}{5} = \frac{16}{5}\right)$ LCM of 8 and 5 is 40 2 8, 5 $\begin{array}{r}
 2 & 3, 5 \\
 \hline
 2 & 4, 5 \\
 2 & 2, 5 \\
 \hline
 5 & 1, 5 \\
 \hline
 1, 1 \\
 \end{array}$ $LCM = 2 \times 2 \times 2 \times 2 \times 5 = 40$

To make denominators as 40 $\frac{67 \times 5}{8 \times 5} = \frac{335}{40}, \ \frac{16 \times 8}{5 \times 8} = \frac{128}{40}$ $\frac{335}{40} - \frac{128}{40} = \frac{335 - 128}{40} = \frac{207}{40}$ (e) $8\frac{8}{17} - \frac{21}{51}$ $\left(8\frac{8}{17} = \frac{17 \times 8 + 8}{17} = \frac{136 + 8}{17} = \frac{144}{17}\right)$ LCM of 17 and 51 is 51 3 17, 51 17 17, 17 $LCM = 3 \times 17 = 51$ To make denomintors as 51 $\frac{144 \times 3}{17 \times 3} = \frac{432}{51}, \quad \frac{21 \times 1}{51 \times 3} = \frac{21}{51}$ $\frac{432}{51} - \frac{21}{51} = \frac{411}{51}$ (f) $19\frac{11}{18} - 17\frac{3}{4}$ $\left(19\frac{11}{18} = \frac{18 \times 19 + 11}{18} = \frac{342 + 11}{18} = \frac{353}{18}\right)$ $\left(17\frac{3}{4} = \frac{4 \times 17 + 3}{4} = \frac{-68 + 3}{4} = \frac{-71}{4}\right)$ LCM of 18 and 4 is 36. 2 | 18, 4 2 | 9, 23 9, 1 3 3, 1 1.1 $LCM = 2 \times 2 \times 3 \times 3 = 36$ To make denominators as 36 $\frac{353 \times 2}{18 \times 2} = \frac{706}{36}, \ \frac{71 \times 9}{4 \times 9} = \frac{639}{36}$ $\frac{706}{36} - \frac{639}{36} = \frac{67}{36}$

Answer Key 51

 $\overline{\mathbf{0}}$

3. (a)
$$4\frac{3}{5} - \frac{2}{3} + \frac{3}{10}$$

 $\left(4\frac{3}{5} = \frac{5 \times 4 + 3}{5} = \frac{20 + 3}{5} = \frac{23}{5}\right)$
LCM of 5, 3 and 10 is 30
 $\frac{3}{2} \frac{5}{5}, \frac{3}{1}, \frac{10}{1}, \frac{2}{5}, \frac{5}{1}, \frac{15}{1}, \frac{1}{11}$
LCM = $3 \times 2 \times 5 = 30$
To make denominators 30
 $\frac{23 \times 6}{5 \times 6} = \frac{138}{30}, \frac{2 \times 10}{3 \times 3} = \frac{20}{30}, \frac{3 \times 3}{10 \times 3} = \frac{9}{30}$
 $\frac{138}{30} - \frac{20}{30} + \frac{9}{30} = \frac{138 - 20 + 9}{30} = \frac{138 - 11}{30}$
 $= \frac{127}{30}$
(b) $5\frac{7}{8} + 2\frac{2}{3} - \frac{11}{12}$
 $\left(2\frac{2}{3} = \frac{3 \times 2 + 2}{3} = \frac{6 + 2}{9} = \frac{8}{3}\right)$
 $\left(5\frac{7}{8} = \frac{8 \times 5 + 7}{8} = \frac{40 + 7}{8} = \frac{47}{8}\right)$
LCM of 8, 3 and 12 is 24
 $\frac{2}{2}\frac{8}{3}, \frac{3}{2}, \frac{2}{3}, \frac{3}{2}$
 $\frac{2}{2}, 1, 1$
 $1, 1, 1$
LCM = $2 \times 2 \times 3 \times 2 = 24$
To make denominator 24.
 $\frac{8 \times 8}{3 \times 8} = \frac{64}{24}, \frac{47 \times 3}{8 \times 3} = \frac{141}{24}, \frac{11 \times 2}{12 \times 2}$
 $= \frac{22}{24}$
 $\frac{64}{24} + \frac{141}{24} - \frac{22}{24} = \frac{64 + 141 - 22}{24} = \frac{205 - 22}{24} = \frac{183}{24}$
(c) $4\frac{7}{21} - 1\frac{5}{6} - \frac{3}{4}$
 $\left(4\frac{7}{21} = \frac{21 \times 4 + 7}{21} = \frac{84 + 7}{21} = \frac{91}{21}\right)$
 $\left(1\frac{5}{6} = \frac{6 \times 1 + 5}{6} = \frac{6 + 5}{6} = \frac{11}{6}\right)$

LCM of 21, 6 and 4 is 2 2 21, 6, 4 2 | 21, 3, 23 21, 3, 1 3 7, 3, 1 7 7, 1, 1 1, 1, 1 $LCM = 2 \times 2 \times 3 \times 3 \times 7 = 252$ $\frac{91 \times 12}{21 \times 12} = \frac{1092}{252}, \quad \frac{11 \times 42}{6 \times 42} = \frac{462}{252}$ $\frac{3 \times 63}{4 \times 63} = \frac{189}{252}$ $\frac{1092}{252} - \frac{462}{252} - \frac{189}{252}$ $=\frac{1092-462-189}{252}$ $=\frac{441}{252} \div \frac{3}{3} = \frac{147}{84}$ (d) $8\frac{1}{3} - 2\frac{3}{5} + 2\frac{1}{2} - \frac{1}{2}$ $\left(8\frac{1}{3} = \frac{3 \times 8 + 1}{3} = \frac{24 + 1}{3} = \frac{28}{5}\right)$ $\left(2\frac{3}{5} = \frac{5 \times 2 + 1}{5} = \frac{10 + 3}{5} = \frac{13}{5}\right)$ $\left(2\frac{1}{2} = \frac{2 \times 2 + 1}{2} = \frac{4 + 1}{1} = \frac{5}{2}\right)$ LCM of 3, 5, and 2 is 30. 1, 1, 1 $LCM = 3 \times 5 \times 2 = 30$ To make denominators 30. $\frac{25 \times 10}{3 \times 10} = \frac{250}{30}, \ \frac{13 \times 6}{5 \times 6} = \frac{78}{30}, \ \frac{5 \times 15}{2 \times 15}$ $=\frac{75}{30}, \frac{1\times15}{2\times15}=\frac{15}{30}$ $\frac{250}{30} - \frac{78}{30} + \frac{75}{30} + \frac{15}{30}$ $\frac{250 - 78 - 75 - 15}{30} = \frac{232}{30}$ (a) Quantity of water in the versel: $\frac{4}{7}$ litres Quantity of water cat drank: $\frac{1}{12}$ litres Water left in the versel: Quantity of water in the vessel - Quantity of water cat drank $=\frac{4}{7}-\frac{1}{12}$ (LCM of 7 and 12 is 84)

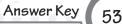
4.

Mathematics-5

To make denominator 84 $\frac{4 \times 12}{7 \times 12} = \frac{48}{84}, \ \frac{1 \times 7}{12 \times 7} - \frac{7}{84} = \frac{48 - 7}{84}$ $=\frac{41}{84}$ $\frac{40 \div 4}{84 \div 4} = \frac{10}{21}$ Answer: $\frac{41}{84}$ litres of water is left in the vessel (b) Length Akash Jumped: $6\frac{7}{8}m = \frac{8 \times 6 + 7}{8}$ $=\frac{48+7}{8}m = \frac{55}{8}m$ Length Prakash jumed: Length of Akash jump $-1\frac{1}{3}m = (1\frac{1}{3}\frac{3 \times 1 + 1}{3} = \frac{3 + 1}{3}m$ $m = \frac{4}{3}m$ $\frac{55}{8} - \frac{4}{3}$ [LCM of 8 and 3 is 24] To make denominator 24 $\frac{55 \times 3}{8 \times 3} = \frac{165}{24}, \ \frac{4 \times 8}{3 \times 8} = \frac{32}{24}$ $\frac{165}{24} - \frac{32}{24} = \frac{165 - 32}{24} = \frac{133}{24}$ Answer: Length of Prakash jump is $\frac{133}{24}$ m. (c) Weight of fruits in basket = $19\frac{1}{3}$ kg $= \frac{3 \times 19 + 1}{3} = \frac{57 + 1}{3} = \frac{58}{3} \frac{1}{8} \frac{1}{8} \frac{1}{9} \frac{1}{9}$ $=\frac{72+1}{9}=\frac{73}{9}$ kg Weight of grapes = $3\frac{1}{6}$ kg = $3\frac{1}{6}$ = $=\frac{18+1}{6}=\frac{19}{6}$ kg Weight of pears: Weight of fruits in basket - [Weight of Bananas + Weight of Grapes] $=\frac{58}{3}$ kg - $(\frac{73}{9}$ kg - $\frac{19}{6}$ kg) $\frac{73 \times 2}{9 \times 2} = \frac{146}{18}, \frac{58 \times 6}{3 \times 6} = \frac{348}{18}, \frac{19 \times 3}{6 \times 3}$ $= \frac{57}{18}$ $\frac{348}{18} \left(\frac{146}{18} + \frac{57}{18} \right) = \frac{348}{18} = \left(\frac{146 + 57}{18} \right)$ $= \frac{-348 - 146 + 57}{9} = \frac{-348 - 203}{18} = \frac{-145}{18}$ $= 8\frac{1}{18}$

Answer: Weight of pears is $8\frac{1}{18}$ kg

(d) Quantity of milk chaayank's mother bought: $3\frac{2}{5}l = \frac{5 \times 3 + 2}{5} = \frac{15 + 2}{5} = \frac{17}{5}l$ Quantity of milk Chayank drank: $\frac{1}{5}l$ Milk left at home: Quantity of milk chaayank's mother bough – Quantity of milk chaayank drank $= \frac{17}{5} - \frac{1}{15}$ [LCM of 5 and 15 is 15] Making denominators as 15 $\frac{17 \times 3}{5 \times 3} = \frac{51}{15}, \frac{1 \times 1}{15 \times 1} = \frac{1}{15}$ $= \frac{51}{15} \frac{-1}{15} = \frac{51 - 1}{15} = \frac{50}{15} = \frac{50 \div 5}{15 \div 5} = \frac{10}{3}$ **Answer:** $\frac{10}{3}l$ of milk is left at home.


Exercise 5.7

1. (a)
$$\frac{3}{8}$$
 by 5
 $\frac{3 \times 5}{8} = \frac{15}{8}$
(b) $\frac{20}{25}$ by 5
 $\frac{4}{20} \underbrace{20 \times 5}_{25} \underbrace{1}_{1} = \frac{4}{1}$
(c) $\frac{7}{20}$ by 12
 $\frac{7 \times 12 \underbrace{6}^{3}}{20} = \frac{21}{5}$
2. (a) $\frac{2}{6} \times \frac{3}{5} = \underbrace{2 \times 3}_{2} \underbrace{6 \times 3}_{1} = \underbrace{\frac{2}{5}}_{1} \underbrace{10}_{1} = \frac{1}{5}$
(b) $\frac{6}{9} \times \frac{3}{8} = \underbrace{\frac{13}{6}}_{13} \underbrace{6 \times 3}_{1} \underbrace{14}_{1} = \frac{1}{4}$
(c) $\frac{10}{15} \times \underbrace{1}_{6} \underbrace{\frac{12}{12}}_{13} \underbrace{10}_{2} \times \underbrace{1}_{3} \underbrace{4}_{5} \times \underbrace{5}_{3} = \frac{1}{9}$
(d) $\frac{3}{4} \times \frac{5}{6} \times \frac{2}{3} = \underbrace{\frac{1}{2}}_{2} \underbrace{4 \times 5}_{5} \times \underbrace{2}_{1} = \frac{5}{12}$
(e) $\frac{3}{5} \times \frac{1}{4} \times \frac{6}{8} = \underbrace{\frac{3 \times 1 \times 6}{5 \times 4} \underbrace{8}_{2} = \frac{9}{80}$
(f) $\frac{2}{4} \times \frac{1}{5} \times \frac{7}{9} = \underbrace{\frac{12}{2} \times 1 \times 7}_{2} \times \frac{7}{4} \times 5 \times 9}_{2} = \frac{7}{90}$
3. (a) Quantity of Juice purcheased by Sunil in a day: 2^{1} litres $= \underbrace{2 \times 2 + 1}_{2} = \underbrace{4 + 1}_{2} = \underbrace{4 + 1}_{2}$

(a) Quantity of Juice purcheased by Sunil in
a day:
$$2\frac{1}{2}$$
 litres = $\frac{2 \times 2 + 1}{2} = \frac{4 + 1}{2} = \frac{5}{2}$ litres

Number of days in a week = 7

Quantity of Juice purchased by Sunil in a week = Juice purchased in one day × Number of days in a week

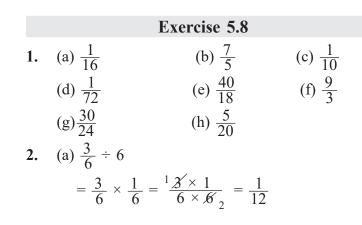
 $\overline{\mathbf{0}}$

$$=\frac{5}{2} \times 7 = \frac{35}{2}l$$

= 17.5l

- **Answer**: Sunil has purchased 17.5 litres of juice in a week.
- (b) Amount of work completed in 1 hour: $\frac{1}{3}$ of work
- Amount of work completed in $2\frac{1}{5}$ hours: Work completed in one hour $2\frac{1}{5}$

$$= \frac{1}{3} \times 2\frac{1}{5} \left(2\frac{1}{5} = \frac{5 \times 2 + 1}{5} = \frac{10 + 1}{5} = \frac{11}{5} \right)$$
$$= \frac{1}{3} \times \frac{11}{5} = \frac{11}{15}$$


- Answer: $\frac{11}{15}$ part of work is completed in 2 $\frac{1}{5}$ hours.
- (c) Number of friends ate pizza: 4 Amount of pizza each ate $=\frac{1}{8}$ of pizza Total pizza eaten: Number of friends × Amount of pizza each ate

$$1 \not A \times \frac{1}{2 \not 8} = \frac{1}{2}$$

- **Answer:** $\frac{1}{2}$ Part of pizza is eaten by all of them
- (d) Weight of an object on moon = 6 times when measured on Earth

Weight of the object on moon = $2\frac{3}{5}$ kg Weight of the object on Earth = $2\frac{3}{5}$ kg × 6 $\left(2\frac{3}{5} = \frac{5 \times 2 + 3}{5} = \frac{10 + 3}{5} = \frac{13}{5}\right)$ $\frac{13}{5}$ kg × 6 = $\frac{78}{5}$ kg

 $\frac{13}{5}\text{kg} \times 6 = \frac{78}{5}\text{kg}$ Answer: $\frac{78}{5}\text{kg}$ will the mass of the object on Earth which weight $2\frac{3}{5}\text{kg}$ on moon.

(b)
$$\frac{6}{10} \div 12$$

 $\frac{6}{10} \times \frac{1}{12} = \frac{1}{10} \times \frac{1}{12} = \frac{1}{20}$
(c) $\frac{16}{20} \div 8$
 $\frac{216 \times 1}{20 \times 8_{-1}} = \frac{2}{20} = \frac{1}{10}$
(d) $3 \div \frac{5}{7}$
 $= 3 \times \frac{7}{5} = \frac{3 \times 7}{5} = \frac{21}{5}$
(e) $7 \div \frac{9}{11}$
 $\frac{7}{1} \times \frac{11}{9} = \frac{77}{9}$
(f) $15 \div \frac{3}{5}$
 $\frac{15}{1} \times \frac{5}{3}$
 $\frac{5}{1} \times \frac{5}{3}$
 $\frac{42}{72} \div \frac{25}{18}$
 $\frac{42}{72} \times \frac{18}{25}$
 $\frac{21}{2} \frac{42}{72} \times \frac{18}{25}$
 $\frac{21}{2} \frac{42}{72} \times \frac{18}{25}$
 $\frac{21}{2} \frac{42}{72} \times \frac{18}{25}$
 $\frac{10}{2} \frac{47}{7} \times \frac{1}{7}$
 $\frac{3}{7} \times \frac{7}{1}$
 $= \frac{3 \times \frac{7}{1}}{7 \times \frac{1}{4}} = \frac{3}{7}$
(a) $\frac{3}{7} \div \frac{1}{7}$
 $\frac{4}{9} \times \frac{9}{1}$
 $\frac{1}{10} \times \frac{6}{10}$
 $\frac{1}{2} \times \frac{10}{10}$
 $\frac{1}{10} \times \frac{10}{10}$
 $\frac{1}{10} \times \frac{10}{10}$
 $\frac{1}{10} \times \frac{10}{10}$

3.

Mathematics-5

(d)
$$\frac{3}{8} \div \frac{2}{15}$$

 $\frac{3}{8} \times \frac{15}{2}$
 $\frac{3 \times 15}{8 \times 2} = \frac{45}{16}$
(e) $3\frac{1}{3} \div 2\frac{1}{10}$
 $3\frac{1}{3} = \frac{3 \times 3 + 1}{3} = \frac{9 + 1}{3} = \frac{10}{3}$
 $2\frac{1}{10} = \frac{10 \times 2 + 1}{10} = \frac{20 + 1}{10} = \frac{21}{10}$
 $\frac{10}{3} \div \frac{21}{10}$
 $= \frac{10}{3} \times \frac{10}{21} = \frac{10 \times 10}{3 \times 21}$
 $= \frac{100}{63}$
(f) $5\frac{1}{3} \div 5\frac{1}{5}$
 $5\frac{1}{3} = \frac{3 \times 5 + 1}{5} = \frac{15 + 1}{3} = \frac{16}{3}$
 $5\frac{1}{5} = \frac{5 \times 5 + 1}{5} = \frac{25 + 1}{5} = \frac{26}{5}$
 $\frac{16}{3} \div \frac{26}{5} = \frac{16}{3} \times \frac{5}{26} = \frac{80}{78}$
(g) $7 \div \frac{2}{3}$
 $\frac{7}{1} \times \frac{3}{2}$
 $= \frac{7 \times 3}{1 \times 2} = \frac{21}{2}$
(h) $\frac{9}{11} \div 6$
 $\frac{39 \times 1}{11 \times 6}$
 $= \frac{3}{22}$
(a) Length of rone: $8\frac{1}{2}$ -m

4. (a) Length of rope: 8¹/₃m Number of pieces rope has been cutted: 25 Length of each piece: Length of rope ÷ Number of pieces =8¹/₃÷25(8¹/₃=<u>3×8+1</u>=<u>24+1</u>=<u>25</u>/₃) = 25/₃÷25=<u>25</u>×<u>1</u>/₂₅=<u>125×1</u>/_{3×25}=<u>1</u>/₃m Answer: Length of each piece is 1/₃m (b) Quantity of Grapes priyanka has: 3¹/₂kg Number of friends Grapes have been equally divided: 4 Quantity of Grapes each friend got = Quantity of grapes ÷ Number of friends $= 3\frac{1}{2} \div 4$ Answer: Each friend got $\frac{7}{8}$ kg of grapes $= \frac{7}{2} \div 4 = \frac{7}{2} \times \frac{1}{4} = \frac{7}{8}$ kg (c) Length of ribbon = $5\frac{1}{4}$ m Length of cutted small equal pieces = $\frac{3}{4}$ m Number of pieces: Length of ribbon \div Length of pieces $= 5\frac{1}{4}$ m $\div \frac{3}{4}$ m $\left(5\frac{1}{4} = \frac{4 \times 5 + 1}{4} = \frac{20 + 1}{4} + \frac{21}{4}\right)$ $= \frac{21}{4}$ M $\div \frac{3}{4} = \frac{21}{4} \times \frac{4}{3} = \frac{7}{2}\frac{21 \times \cancel{4}}{\cancel{4}} = 7$ pieces. (d) Number of $\frac{1}{5}$ kg boxes can be made with $1\frac{1}{2}$ kg $\div \frac{1}{5}$ kg $\left(1\frac{1}{2} = \frac{2 \times 1 + 1}{2} = \frac{2 + 1}{2} = \frac{3}{2}\right)$ $= \frac{3}{2} \div \frac{1}{5}$ kg $= \frac{3}{2} \times \frac{5}{1} = \frac{3 \times 5}{2 \times 1} = \frac{15}{2} = 7\frac{1}{2}$ Answer: $7\frac{1}{2}$, $\frac{1}{5}$ kg boxes can be made with, $\frac{1}{2}$ kg of choclate.

Learning Updates

1. (a)
$$3\frac{3}{5} = \frac{5 \times 3 + 3}{5} = \frac{15 + 3}{5} = \frac{18}{5}$$

(b) $6\frac{2}{3} = \frac{3 \times 6 + 2}{3} = \frac{18 + 2}{3} = \frac{20}{3}$
(c) $4\frac{5}{6} = \frac{6 \times 4 + 5}{6} = \frac{24 + 5}{6} = \frac{31}{6}$

2. (a)
$$\frac{17}{8}$$

Denominator 2 \leftarrow Whole number
 (-16)
 01 \leftarrow Numerator

 $= 2\frac{1}{8}$

Answer Key 55

(b) $\frac{23}{6}$ Denominator $3 \leftarrow$ Whole number -1805 - Numerator $= 3\frac{5}{6}$ (c) $\frac{15}{7}$ Denominator $2 \leftarrow$ Whole number $1 \rightarrow 7$ 15 -1401 - Numerator $= 2\frac{1}{7}$ 3. (a) $\frac{4}{7} = \frac{4 \times 2}{7 \times 2} = \frac{8}{14}, \frac{4 \times 3}{7 \times 3} = \frac{12}{21}, \frac{4 \times 4}{7 \times 4}$ $=\frac{16}{28}, \frac{4 \times 5}{7 \times 5} = \frac{20}{35}, \frac{4 \times 6}{7 \times 6} = \frac{24}{42}$ (b) $\frac{5}{6} = \frac{5 \times 2}{6 \times 2} = \frac{10}{12}, \frac{5 \times 3}{6 \times 3} = \frac{15}{18}, \frac{5 \times 4}{6 \times 4}$ $=\frac{20}{24}, \frac{5\times5}{6\times5} = \frac{25}{30}, \frac{5\times6}{6\times6} = \frac{30}{36}$ (c) $\frac{3}{5} = \frac{3 \times 2}{5 \times 2} = \frac{6}{10}, \frac{3 \times 3}{5 \times 3} = \frac{9}{15}, \frac{3 \times 4}{5 \times 4}$ = $\frac{12}{20}, \frac{3 \times 5}{5 \times 5} = \frac{15}{25}, \frac{3 \times 6}{5 \times 6} = \frac{18}{30}$ 4. (a) $\frac{2}{3} = \frac{12}{18}, \frac{2 \times 6}{3 \times 6} = \frac{12}{18}$ (b) $\frac{6}{13} = \frac{24}{52}, \frac{6 \times 4}{13 \times 4} = \frac{24}{52}$ (c) $\frac{11}{27} = \frac{33}{81}$ $\frac{11 \times 3}{27 \times 3} = \frac{33}{81}$ 5. (a) $\frac{5}{8}, \frac{15}{24}$ $\frac{5}{8}$ $\frac{15}{24}$ $5 \times 24 = 120$ $15 \times 8 = 120$ Since, the products are equal, the fractions $\frac{5}{8}$ and $\frac{15}{24}$ are equilvalent fractions. (b) $\frac{7}{11}, \frac{28}{44}$ $\frac{7}{11}$ $7 \times 44 = 308, 28 \times 11 = 308$ 308 = 30

Since, the product are equal, the fractions $\frac{7}{11}$ and $\frac{28}{44}$ are equivalent fractions. (c) $\frac{3}{10}, \frac{12}{50}$ $\frac{3}{10}$ $3 \times 50 = 150$ $12 \times 10 = 120$ $150 \neq 120$ Since, the products are not equal, the fraction $\frac{3}{10}$ and $\frac{12}{50}$ are non-equilvalent fractions. 6. (a) $\frac{40}{72}$ $\frac{40 \div 8}{72 \div 8} = \frac{5}{9}$ (b) $\frac{51}{68}$ $\frac{51 \div 17}{68 \div 17} = \frac{3}{4}$ $\begin{array}{r} \overline{68} \\ (c) \ \frac{35}{63} \\ \frac{35 \div 7}{63 \div 7} = \frac{5}{9} \\ \hline \mathbf{7.} \quad (a) \ \frac{2}{7}, \ \frac{11}{35}, \ \frac{9}{14}, \ \frac{13}{28} \\ [LCM of 7, \ 35, \ 14 \ and \ 28 \ is \ 140] \\ \overline{7}, \ \frac{35, \ 14, \ 28}{7} \\ \hline \mathbf{7} \ 14 \end{array}$ 5 7, 35, 7, 7 7 7, 7, 7, 7 1. 1. 1. 1 So, $\frac{2 \times 20}{7 \times 20} = \frac{40}{140}$, $\frac{11 \times 4}{35 \times 4} = \frac{44}{140}$ $\frac{9 \times 10}{14 \times 10} = \frac{90}{140}$, $\frac{13 \times 5}{28 \times 5} = \frac{70}{140}$ $\frac{40}{140} < \frac{44}{140} < \frac{70}{140} < \frac{90}{140}$ [40 < 44 < 70 < 90] Hence, $\frac{2}{7} < \frac{11}{35} < \frac{13}{28} < \frac{9}{14}$ (b) $2\frac{5}{9}$, $1\frac{3}{12}$, $4\frac{1}{3}$, $\frac{4}{15}$ $\left(2\frac{5}{9} = \frac{9 \times 2 + 5}{9} = \frac{18 + 5}{9} = \frac{23}{9}\right)$ $\left(1\frac{3}{12} = \frac{12 \times 1 + 3}{12} = \frac{12 + 3}{12} = \frac{15}{12}\right)$ $\left(4\frac{1}{3} = \frac{3 \times 4 + 1}{3} = \frac{12 + 1}{2} = \frac{13}{3}\right)$

56

Mathematics-5

LCM of 9, 12, 3 and 15 is 180. 3 3, 9, 12, 15 2 | 1, 3, 4, 53 1, 3, 2, 5 2 1, 1, 2, 5 5 1, 1, 1, 5 1, 1, 1, 1 $LCM = 3 \times 2 \times 3 \times 2 \times 5 = 180$ So, $\frac{23 \times 20}{9 \times 20} = \frac{460}{180}$ $\frac{15 \times 15}{12 \times 15} = \frac{225}{180}, \frac{13 \times 60}{3 \times 60} = \frac{780}{180}, \frac{4 \times 12}{15 \times 12}$ $=\frac{36}{180}$ $\frac{36}{180} < \frac{225}{180} < \frac{460}{180} < \frac{780}{180}$ [As, 36 < 225 < 460 < 780] Hence, $\frac{4}{15} > 1\frac{3}{12} < 3\frac{2}{6} < 4\frac{1}{3}$ 8. (a) $\frac{3}{6}$, $\frac{4}{7}$, $\frac{1}{3}$, $\frac{12}{14}$ [LCM of 6, 7, 3, and 14 is 42] 2 6, 7, 3, 14 2 3, 7, 3, 7 7 1, 7, 1, 7 1, 1, 1, 1 So, $\frac{3 \times 7}{6 \times 7} = \frac{21}{42}$, $\frac{4 \times 6}{7 \times 6} = \frac{24}{42}$, $\frac{1 \times 14}{3 \times 14}$ $=\frac{14}{42}, \frac{12 \times 3}{14 \times 3} = \frac{36}{42}$ $\frac{36}{42} > \frac{24}{42} > \frac{21}{42} > \frac{42}{42} > \frac{42}{42} = \frac{14}{42} = \frac{14$ Hence, $\frac{12}{14} > \frac{4}{7} > \frac{3}{6} > \frac{1}{2}$ (b) $6\frac{4}{9}, \frac{17}{3}, 3\frac{4}{9}, \frac{17}{8}$ $\left(6\frac{4}{9} = \frac{9 \times 6 + 4}{9} = \frac{54 + 4}{9} = \frac{58}{9}\right)$ $\left(3\frac{2}{6} = \frac{6 \times 5 + 2}{6} = \frac{18 + 2}{6} = \frac{20}{6}\right)$

LCM of 9, 3, 6 and 18 is 72 2 9, 3, 6, 18 2 9, 3, 3, 9 $2|9, \overline{3}, \overline{3}, 9$ 3 9, 3, 3, 9 3 3, 1, 1, 3 1, 1, 1, 1 $LCM = 2 \times 2 \times 2 \times 3 \times 3 = 72$ So, $\frac{58 \times 8}{9 \times 8} = \frac{464}{72}$, $\frac{17 \times 24}{3 \times 24} = \frac{408}{72}$, $\frac{20 \times 12}{6 \times 12}$ $=\frac{240}{72}, \frac{17 \times 4}{18 \times 4} = \frac{68}{72}$ $\frac{464}{72} > \frac{408}{72} > \frac{240}{72} > \frac{68}{72}$ [464 > 408 > 240 > 68]Hence, $6\frac{4}{9} > \frac{17}{3} > 3\frac{2}{6} > \frac{17}{18}$ 9. (a) $2\frac{3}{7} + \frac{9}{4}$ $\left(2\frac{3}{7} = \frac{7 \times 2 + 3}{7} = \frac{14 + 3}{7} = \frac{17}{7}\right)$ $=\frac{17}{7}+\frac{9}{4}$ [LCM of 7 and 4 is 28] $LCM = 7 \times 2 \times 2 = 28$ So, $\frac{17 \times 4}{7 \times 4} = \frac{68}{28}, \frac{9 \times 7}{4 \times 7} = \frac{63}{28}$ $\begin{array}{rcl}
60, & 7 \times 4 & 28, & 4 \times 7 & 28\\
\frac{68}{28} + \frac{63}{28} = \frac{68 + 63}{28} = \frac{131}{28}\\
(b) & 1\frac{3}{4} + 2\frac{2}{3} + 3\frac{1}{6}\\
& 1\frac{3}{4} = \frac{4 \times 1 + 3}{4} = \frac{4 + 3}{4} = \frac{7}{4}\\
& 2\frac{2}{3} = \frac{3 \times 2 + 2}{4} = \frac{6 + 2}{3} = \frac{8}{3}\\
& 3\frac{1}{6} = \frac{6 \times 3 + 1}{6} = \frac{18 + 1}{6} = \frac{19}{6}\\
& \frac{7}{4} + \frac{8}{3} + \frac{19}{6} \text{ [LCM of 4, 3 and 6 is 12]}\\
& 7 \times 3 & 21 & 8 \times 4 & 32 & 21 \times 32 + 38\end{array}$ $\frac{7 \times 3}{4 \times 3} = \frac{21}{12}, \frac{8 \times 4}{3 \times 4} = \frac{32}{12}, \frac{21 \times 32 + 38}{12}$ $=\frac{91}{12}$ (c) $2\frac{4}{5} + 1\frac{3}{10} + 2\frac{1}{2}$ $2\frac{4}{5} = \frac{5 \times 2 + 4}{5} = \frac{10 + 3}{5} = \frac{14}{5}$

Answer Key

57

 $\mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O}$

$$1\frac{3}{10} = \frac{10 \times 1 + 3}{10} = \frac{10 + 3}{10} = \frac{13}{10}$$

$$2\frac{1}{2} = \frac{2 \times 2 + 1}{2} = \frac{4 + 1}{2} = \frac{5}{2}$$

$$\frac{14}{5} + \frac{13}{10} + \frac{5}{2} [\text{Lcm of 5, 10 and 2 is 10]}$$

$$\frac{14 \times 2}{5 \times 2} = \frac{28}{10}, \frac{13 \times 1}{10 \times 1} = \frac{13}{10}, \frac{5 \times 5}{2 \times 5}$$

$$= \frac{25}{10}$$

$$\frac{28}{10} + \frac{13}{10} + \frac{25}{10} = \frac{28 \times 13 + 25}{10} = \frac{66}{10}$$
10. (a) $3\frac{3}{4} = \frac{4 \times 3 + 3}{4} + \frac{12 + 3}{4} = \frac{15}{4}$

$$\frac{15}{4} - \frac{7}{10} [\text{LCM of 4 and 10 is 20]}$$

$$\frac{15 \times 5}{4 \times 5} = \frac{75}{20}, \frac{7 \times 2}{10 \times 2} = \frac{14}{20}$$

$$\frac{75}{20} \div \frac{14}{20} = \frac{75 - 14}{20} = \frac{61}{20}$$
(b) $1\frac{3}{4} + \frac{7}{8}$

$$\left(1\frac{3}{4} = \frac{4 \times 1 + 3}{4} = \frac{4 + 3}{4} = \frac{7}{4}\right)$$

$$= \frac{7}{4} + \frac{7}{8}$$
[LCM of 4 and 8 is 8]
$$\frac{2}{2} \frac{2}{2}, \frac{4}{2}$$

$$\frac{2}{1}, \frac{2}{1}, \frac{1}{1}$$
LCM = $2 \times 2 \times 2 = 8$
so, $\frac{7 \times 2}{4 \times 2} = \frac{14}{8}, \frac{7 \times 1}{8 \times 1} = \frac{7}{8}$

$$\frac{14}{8} + \frac{7}{8} = \frac{21}{8}$$
(c) $\frac{8}{5} \div \frac{9}{15} = \frac{8}{5} \times \frac{15}{9} = \frac{8 \times 15^{3}}{5^{5} \times 9} = \frac{24}{9} = \frac{24 \div 3}{9 \div 3} = \frac{8}{3}$
(d) $\frac{15}{10} \checkmark \frac{30}{20}, \frac{315 \times 20^{3}}{10^{5} \times 20^{4}} = \frac{9}{4}$
11. Weight of drum with pulses: $40\frac{1}{6}$ kg
$$\left(40\frac{1}{6} = \frac{6 \times 40 + 1}{6} = \frac{240 + 1}{6} = \frac{241}{6}\right)$$
Weight of empty drum = $13\frac{3}{4}$ kg $\left(13\frac{3}{4} = \frac{4 \times 13 + 3}{4} = \frac{52 + 3}{4} = \frac{55}{4}$
Weight of pulses: Weight of drum with pulses - Weight of drum with pulses - Weight of drum with pulses - Weight of empty drum = 13\frac{3}{4} - \frac{55}{4}

[LCM of 6 and 4 is 12] $LCM = 2 \times 2 \times 3 = 12$ $\frac{241 \times 2}{6 \times 2} = \frac{482}{12}, \ \frac{55 \times 3}{4 \times 3} = \frac{165}{12}$ $\frac{482}{12} - \frac{165}{12} = \frac{482 - 165}{12} = \frac{317}{12}$ Answer: Weight of Pulses is $\frac{317}{12}$ kg. 12. Total distance travelled: $47\frac{1}{2}$ km $\left(47\frac{1}{2} = \frac{47 \times 2 + 1}{2} = \frac{94 + 1}{2} = \frac{95}{2}\right)$ Distance covered by Bus: $29\frac{1}{3}$ km $\left(29\frac{1}{3} = \frac{3 \times 29 + 1}{3} = \frac{87 + 1}{3} = \frac{88}{3}\right)$ Distance covered by Horsecart: $8\frac{5}{6}$ km: $\left(8\frac{5}{6}\right)$ = $\frac{6 \times 8 + 5}{6} = \frac{48 + 5}{6} = \frac{53}{6}$ Distance covered on foot: Total distance covered - [Distance covered by Bus + Distance covered by Horesecart] $=\frac{95}{2}-\left(\frac{88}{3}+\frac{53}{6}\right)$ [LCM of 2, 3 and 6 is 6] So, $\frac{95 \times 3}{2 \times 3} = \frac{285}{6}, \frac{88 \times 2}{3 \times 2} = \frac{176}{6}, \frac{53 \times 1}{6 \times 1}$ $=\frac{53}{6}$ $\frac{285}{6} - \left(\frac{176}{6} + \frac{53}{6}\right)$ $= \frac{285}{6} - \left(\frac{176 + 53}{6}\right) = \frac{285}{6} - \left(\frac{229}{6}\right)$ $\frac{285 - 229}{6} = \frac{56}{6} = \frac{56 \div 2}{6 \div 2} = \frac{28}{3}$ Answer: He travelled $\frac{28}{3}$ km by foot.

- 13. Distance from Rashi's school to home: $15\frac{3}{5}$ km Distance she travelled $= \frac{2}{3}$ of total disance = $\frac{2}{3}$ of $15\frac{3}{5}$ $\left(15\frac{3}{5} = \frac{15 \times 5 + 3}{5} = \frac{75 + 3}{5} = \frac{78}{5}\right)$ $= \frac{2}{3} \times \frac{78}{5} = \frac{156}{15}$ km Distance left to travel = Total distance -Distance travelled $\frac{78}{5} - \frac{156}{15}$ [LCM of 5 and 15 is 15] $\frac{3}{5}\frac{5}{5}\frac{5}{5}\frac{5}{1}$ $\frac{1}{1}, 1$ So, $\frac{78 \times 3}{5 \times 3} = \frac{234}{15}, \frac{156 \times 1}{15 \times 1} = \frac{156}{15}$ $\frac{234}{15} - \frac{156}{15} = \frac{234 - 156}{15} = \frac{78}{15}$ Answer: $\frac{78}{15}$ km is left to travel. Multiple Choice Questions
- 1. (b) improper
- **2.** (a) proper
- 3. (c) $\frac{7}{3}$
- 4. (a) greater
- **5.** (d) 1

6.
$$\frac{3}{4} \times \text{Fraction} = 12$$

Fraction $= \frac{12}{1} \times \frac{4}{3}$
Fraction $= \frac{4}{1} \times \frac{3}{2} \times 4$
Fraction $= \frac{16}{1}$
Answer: (d) $\frac{16}{1}$

7. (a) more

Skills Check
1.
$$\frac{8}{15} \div \left(\frac{2}{4} + \frac{3}{10}\right)$$

LCM of 4 and 10 is 20
 $\frac{2}{2} \frac{4}{4} \cdot \frac{10}{2}$
 $\frac{2}{2} \frac{2}{2} \cdot \frac{5}{5}$
 $\frac{5}{15} \frac{1}{15}$
LCM = 2 × 2 × 5 = 20
So $\frac{2 \times 5}{4 \times 5} = \frac{10}{20}, \frac{3 \times 2}{10 \times 2} = \frac{6}{20}$
 $\frac{8}{15} \div \left(\frac{10}{20} + \frac{6}{20}\right)$
 $\frac{8}{15} \div \left(\frac{10}{20} + \frac{6}{20}\right)$
 $\frac{8}{15} \div \frac{16}{20} = \frac{8}{5} \times \frac{20}{16} = \frac{1.8 \times 2002}{145 \times 1621} = \frac{2}{3}$
2. $\frac{5}{8} \div \left(\frac{3}{4} - \frac{1}{2}\right) \times \frac{4}{5} \div \frac{8}{10}$
[LCM of 8, 4, and 2 is 8]
 $\frac{2}{2} \frac{18}{4}, \frac{4}{2}, \frac{2}{1}$
 $\frac{2}{2} \frac{1}{4}, 2, 1}$
 $\frac{2}{2} \frac{1}{4}, 2, 1}$
 $\frac{2}{2} \frac{1}{4}, 2, 1}$
 $\frac{2}{8} \div \left(\frac{6}{8} - \frac{4}{8}\right) \times \frac{4}{5} \times \frac{10}{8}$
 $\frac{5}{8} \div \left(\frac{6-4}{8}\right) \times \frac{4}{5} \times \frac{10}{8}$
 $\frac{5}{8} + \left(\frac{6-4}{8}\right) \times \frac{4}{5} \times \frac{10}{8}$
 $\frac{5}{8} + \frac{2}{8} \times \frac{1.4 \times 102^{21}}{1.5 \times 8_{21}}$
 $\frac{5}{8} \times 1 = \frac{7}{8}$
3. $\left(\frac{1}{3} + \frac{1}{3}\right) \times \frac{9}{16} - \frac{1}{8}$
 $\frac{2}{3} \times \frac{9}{16} - \frac{1}{8}$
 $\frac{1.2^{2} \times 9^{2}}{1.3^{2} \times 16_{8}} - \frac{1}{8}$
 $\frac{3}{8} - \frac{1}{8} = \frac{2}{8} = \frac{1}{4}$

Answer Key 59

 $\overline{\mathbf{0}}$

4.
$$\frac{4}{5} \div \left(3\frac{2}{5} - 2\frac{1}{5}\right) + \frac{1}{2}$$

 $\left(3\frac{2}{5} = \frac{5 \times 3 + 2}{5} = \frac{15 + 2}{5} = \frac{17}{5}\right)$
 $\left(2\frac{1}{5} = \frac{5 \times 2 + 1}{5} = \frac{10 + 1}{5} = \frac{11}{5}\right)$
 $\frac{4}{5} \div \left(\frac{7}{5} - \frac{11}{5}\right) + \frac{1}{2}$
 $\frac{4}{5} \div \left(\frac{17 - 11}{5}\right) + \frac{1}{2}$
 $\frac{4}{5} \div \frac{6}{5} + \frac{1}{2} = \frac{2 \cdot \frac{4}{5} \times \frac{5}{1}}{1 \cdot \frac{5}{5} \times \frac{6}{3}} + \frac{1}{2}$
 $\frac{2}{3} + \frac{1}{2}$ [LCM of 2 and 3 is 6]
 $\frac{2 \mid 2, 3}{3 \mid 1, 3}$
LCM = 2 × 3 = 6
So, $\frac{2}{3} \times \frac{2}{2} = \frac{4}{6}, \frac{1 \times 3}{2 \times 3} = \frac{3}{6}$
 $\frac{4}{6} + \frac{3}{6} = \frac{4 + 3}{6} = \frac{7}{6}$
Decimals

Exercise 6.1

- Fraction = $\frac{\text{Shaded parts}}{\text{Total parts}}$ (a) $\frac{3}{10} = 0.3$ (b) $\frac{7}{10} = 0.7$ 1.

 - (c) $\frac{35}{100} = 0.35$
- (a) 0.24 =Zero point two four 2.
 - (b) 0.09 = Zero point zero nine
 - (c) 0.576 =Zero point five seven six
 - (d) 0.006 =Zero point zero zero six
 - (e) 0.039 =Zero point zero three nine
 - (f) 0.68 = Zero point six eight
- **3.** (a) 0.7 (b) 1.8
 - (c) 27.2 (d) 0.03

(d) 1.19
(f) 12.36
(g) 0.008
(h) 0.368
4. (a)
$$\frac{705}{100}$$

(b) $\frac{9}{10}$
(c) $\frac{1}{1000}$
(d) $\frac{4545}{100}$
(e) $\frac{6}{100}$
(f) $\frac{13301}{1000}$
(g) $\frac{125}{1000}$
(h) $\frac{9}{100}$
5. (a) $1\frac{5}{10} = \frac{10 \times 1 + 5}{10} = \frac{10 + 5}{10} = \frac{15}{10} = 1.5$
(b) $2\frac{4}{10} = \frac{10 \times 2 + 4}{10} = \frac{20 + 4}{10} = \frac{24}{10} = 2.4$
(c) $3\frac{7}{100} = \frac{100 \times 3 + 7}{100} = \frac{300 + 7}{100} = \frac{307}{100} = 3.07$
(d) $2\frac{1}{1000} = \frac{1000 \times 2 + 1}{1000} = \frac{2000 + 1}{1000} = 2.001$

1.

	Number	Hundreads (100)	Tens (10)	Ones (1)	Decimal point
(a)	0.009			0	
(b)	5.26			5	
(c)	124.264	1	2	4	

	Number	Tents $(\frac{1}{10})$	Hundreds $(\frac{1}{100})$	Thousands $(\frac{1}{1000})$
(a)	0.009	0	0	9
(b)	5.26	2	6	
(c)	124.264	2	6	4

2.

	Decimal numbers	Method I	Method II
(a)	237.058	Two hundred	Two hundred
		thirty seven	thirty seven and
		point zero five	fifty eight thou-
		eight	sandths
(b)	660.419	Six hundred	Six hundred
		sixty point	sixty and four
		four one nine	hundred nine-
			teen thousandths
(c)	29.004	Twenty nine	Two nine and
		point zero	four thousandths
		zero four	

Mathematics-5

3.			
	Decimal numbers	Method I	Method II
(a)	16.3	1 ten + 6 ones + 3 tenths	10+6+0.3
(b)	6.24	6 ones + 2 tenths + 4 hundreths	6 + 0.2 + 0.04
(c)	21.459	2 tens + 1ones + 4 tenths + 5 hundreths + 9 thousandths	20 + 1 + 0.4 + 0.05 + 0.009
(d)	126.47	1 hundred + 2 tens + 6 ones + 4 tenths + 7 hundreths	$\frac{100 + 20 + 6 +}{0.4 + 0.07}$
(e)	0.93	9 tenths + 3 hundreths	0+0.9+0.03

	Decimal numbers	Method III
(a)	16.3	$10 + 6 + \frac{3}{10}$
(b)	6.24	$6 + \frac{2}{10} + \frac{4}{100}$
(c)	21.459	$20 + 1 + \frac{4}{10} + \frac{5}{100} + \frac{9}{1000}$
(d)	126.47	$100 + 20 + 6 + \frac{4}{10} + \frac{7}{100}$
(e)	0.93	$\left(\frac{9}{10} + \frac{3}{100}\right)$

- 4. (a) $20 + \frac{1}{10} + \frac{2}{100} + \frac{3}{1000} = 20 + 0.1 + 0.02 + 0.003 = 20.123$
 - (b) $3000 + 9 + \frac{16}{100} = 3009 + 0.16 = 3009.16$
 - (c) $60 + 4 + \frac{1}{1000} = 64 + 0.001 = 64.001$
 - (d) 4 hundreds + 6 ones + 6 tenths + 3 hundreths = 400 + 6 + 0.6 + 0.03 = 406 + 0.63 + = 406.63
 - (e) 5 + 0.3 + 0.008 = 5.308

(f)
$$(6 \times 1000) + (8 \times 10) + (5 \times \frac{1}{10}) + (3 \times \frac{9}{1000})$$

= $6000 + 80 + \frac{5}{10} + \frac{3}{1000}$
= $6080 + 0.5 + 0.003$
= 6080.503

Exercise 6.3

- 1. Like fractions
 - (a) 0.49, 0.09, 3.06, 15.68 [All decimal numbers have same number of decimal places]
 - (b) 0.656, 2.001, 15.905, 215.812 [All decimal number have same number of decimal places]
- 2. Unlike fractions
 - (a) 0.32, 0.456, 17.4, 617.561 [All decimal numbers have different number of decimals places]
 - (c) 0.56, 0.605, 12.1, 270.01 [All decimal numbers have different number of decimals places]
- **3.** (a) 0.30, 0.300
 - (b) 2.50, 2.500
 - (c)6.400, 6.4000
 - (d) 9.7000, 9.70000
- **4.** (a) 2.3, 6.87

Adding 1 or more zero to exteme right equal to have number of decimal places.

- $2.3 \rightarrow \underline{2.30}$
- $6.87 \rightarrow 6.87$
- (b) 2.63, 43.6, 1.264

Adding 1 or more zero to extreme right to have equal number of decimal places.

Answer Key

61

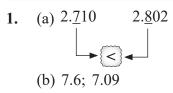
 $2.63 \rightarrow 2.63\underline{0}$ $43.6 \rightarrow 43.6\underline{00}$ $1.264 \rightarrow 1.264$

(c) 5.1, 5.01, 5.001

Adding 1 or more zero to extreme right to have equal number of decimal places.

$$5.1 \rightarrow 5.1\underline{00}$$

- $5.01 \rightarrow 5.01 \underline{0}$
- $5.001 \rightarrow 5.001$


(d) 40.4, 48.26, 100.143

Adding 1 or more zero to extreme right to have equal number of decimal places.

 $40.4 \rightarrow 40.4\underline{00}$ $48.26 \rightarrow 48.26\underline{0}$

$$100.143 \rightarrow 100.143$$

Exercise 6.4

Converting into like fractions $7.6 \rightarrow 7.60, 7.09 \rightarrow 7.09$ $7.60 \quad 7.09$

(c)
$$11.406$$
 11.278
(d) 0.856 0.809

Converting into like fractions $0.126 \rightarrow 0.126$

$$1.34 \rightarrow 1.340$$

$$0.126 \qquad 1.340$$

(f) 27.068, 27.9 Converting into fractions $27.068 \rightarrow 27.068$ $27.9 \rightarrow 27.9\underline{00}$

- 27.<u>0</u>68 22.<u>9</u>00
- **2.** (a) 0.035, 0.123, 0.608, 1.708

Greatest number = 1.708 [As 1 is greates digit at ones place]

(b) 123.5, 1.555, 60.99, 350.2

Converting into like fraction: 123.500, 1.555, 60.990, 350.200

Greatest number: 350.200 [As 3 is the greatest digit at hundreds place]

3. (a) 112.47, 0.8, 202.39, 500.136

Converting into like fraction: 112.470, 0.800, 202.390, 500.136

Smallest number: 0.800 (As 0 is the smallest whole]

(b) 0.62, 25.131, 368.147, 199.09

Converting into like fractions: 0.620, 25.131, 368.147, 199.090

Smallest fraction: 0.620 [0 is the smallest whole]

4. (a) 5.03, 5.030, 5.31, 53.5

Converting into like fractions: 5.03, 5.030, 5.310, 53.500 Ascending: 5.030 < 5.030 < 5.310 < 53.500

Ascending: 5.030 < 5.030 < 5.510 < 53.500or 5.03 < 5.030 < 5.31 < 53.5 or 5.030 < 5.31 < 53.5 [As 5.030 is equilvalent to 5.03]

(b) 0.7, 0.77, 70,0.777, 77

Converting into like decimals = 0.700, 0.770, 70.000, 0.777, 77.000 Ascending order: 0.700 < 0.770 < 0.777 < 70.000 < 77.000

or0.7 < 0.77 < 0.777 < 70 < 77

5. (a) 10.01, 10.32, 10.02, 10.045

Converting into like fractions: 10.010, 10.032, 10.032, 10.045 10.045 > 10.032 > 10.020 > 10.010 or 10.045 > 10.032 > 10.02 > 10.01

(b) 2.003, 20.03, 200.03, 0.203
Converting into like fractions: 2.003, 20.030, 200.030, 0.203
Descending order: 200.030 > 20.030 > 2.003 > 0.203
200.03 > 20.03 > 2.003 > 0.203

Exercise 6.5

- 1. (a) Converting into like fraction = 6.9 + 8.9 + 18.8
 - ② ②
 6 . 9
 - 8.9
 - + 1 8 . 8
 - 3 4 . 6
 - (b) Converting into like fraction = 14.75 + 10.25 + 12.60
 - 1 1
 - 1 4 . 7 5
 - 1 0 . 2 5

 - (c) Converting into like fractions = 18.7 + 9.00 + 7.16

	3	4	8	6
+		7	1	6
		9	0	0
	1	8	7	0
	2			

= 34.86

(d) 28.75 + 19.32 + 4.652Converting into like fractions = 28.750 +19.320 + 4.65221 12 8 . 7 5 0 1 9 . 3 2 0 4 . 6 5 2 +5 2 . 7 2 2 (e) 82.25 + 16.95 + 3.752 + 4.001Converting into like fractions = 82.250 +16.950 + 3.752 + 4.001(1) (1) (1)8 2 . 2 5 0 1 6 . 9 5 0 3 7 5 2 4 . 0 0 1 + 1 0 6 . 9 5 3 (f) 3.15.6 + 0.325 + 41.9 + 7.29Converting into like fractions = 315.600 +0.325 + 41.900 + 7.290(1) (2) (1)3 1 5 . 6 0 0 0.325 4 1 9 0 0 7.290 + 6 5 . 1 1 5 3 (g) 7.5 + 12.865 + 0.782 + 95.905Converting into like fraction = 7.500 +12.865 + 0.782 + 95.905(1) (3) (1) (1)7.500 1 2 . 8 6 5 0 7 8 2 + 9 5 . 9 0 5 1 1 7 . 0 5 2

Answer Key 63

....

	(h) 48.609 + 0	.999 +	2.99
	Converting 0.999 + 2.99		ke fractions = $8.609 +$
	121	1	
	4 8 . 6	0 9	
	0.9	99	
	+ 2.9	9 0	
	5 2 . 5	98	
2.	(a) ₹25.9 + ₹10		
	Converting in	ito like	fractions = $₹25.9 + ₹16.07$
	₹	р	
	2 5	9 0	
	- 1 6	0 7	
	4 1	9 7	
	(b) 14.87m + 2	21.25m	= 36.12m
	m	cm	
	1	1	
	1 4	8 7	
	+ 2 1	2 5	
	3 6	1 2	
	-		4.576lke fraction = 7.076l +
	7.500 <i>l</i>		
	<i>l</i> 1	m <i>l</i>	
	7 0	7 6	
	+ 7 5		
	1 4 5	7 6	
	(d) 25.25kg +	0.605kg	g = 25.855 kg
		into lik	e fraction = 25.250 kg +
	0.605kg		-
	kg	g	
	2 5 2	5 0	
	+ 0 6		-
	2 5 8	5 5	

3. (a) 3.456 - 2.2 Converting into like fraction = 3.456 -2.200 3.456 + 2 . 2 0 0 1 . 2 5 6 (b) 20.876 - 1.979 9 (17) 1 10 7 16 16 20.876 1.979 1 8 8 9 7 . (c) 15.2 - 2.9567 Converting into like fractions = 15.2000 - 2.9567(1) (9) (9) (4) 1 10 10 10 1 5 . 2 0 0 0 2 . 9 5 6 7 12. 2 4 3 3 (d) 345.607 - 235.992 Converting into like fractions = 345.607 - 235.992(14) (15) \$ 10 3 A 3 A 5 . 6 Ø 7 - 2 3 5 . 9 9 2 1 0 9 . 6 1 5 (e) 0.9 - 0.279Converting into like fractions = 0.900 - 0.2799 8 10 10 $0 \cdot \mathscr{G} \otimes \mathscr{G}$ - 0 . 2 7 9 0 . 6 2 1

Mathematics-5

4. (a) 5.381 – 5.191

	l	
	2	(18)
5.	X	8
- 5 .	1	9
0	1	9

(b) 20.654kg - 16.59kg 20.654kg - 16.59kg = 4.064kg = 20.654kg - 16.590kg

kg						
	1	10	5	(15)		
	¥	ø.	ø	Ź	4	
_	1	6.	5	9	0	
	0	4.	0	6	4	

(c) 19.325km - 0.273km 19.325km - 19.052km

	km							
			2	12				
	1	9.	X	Ĺ	5			
_		0.	2	7	3			
	1	9	0	5	2			

(d) 536.275kg - 364.20kg = 172.075kg

		km			
4	(13)				
5	X	6.	2	7	5
- 3	6	4.	2	0	0
1	7	2.	0	7	5

(e) ₹25.54 – ₹0.04

= ₹25.50

₹								
	2	5.	5	4				
_		0.	0	4				
	2	5.	5	0				

	(f) 0.695 km - 0.199 km
	= ₹0.496km
	km
	(18)
	2 8 15
	0. 6 9 5
	-0.199
	0.496
5.	(a) $16.85 - [8.03 + 8.07]$
	= 00.42
	$8 \cdot 3 \cdot 6 - 1 \cdot 6 \cdot 4 \cdot 3$
	+ 8 . 0 7 0 0 . 4 2
	16.43
	(b)[68.01 + 6.9] - [68.01 - 6.9]
	Converting into like fractions
	$\bigcirc \bigcirc $
	6 8 . 0 1 6 <i>8</i> . Ø 1
	+ 6 . 9 0 - 6 . 9 0
	7 4 . 9 1 6 1 . 1 1
	74.91
	= [68.01 + 6.90] - [68.01 - 6.90]
	= 74.91 - 61.11
	= 13.80
	(c) Cost of icecream: ₹31.75
	Cost of Soap: ₹41.25
	Cost of shoepolish: ₹52.00
	Total money spent by Ajay: Cost of cream + Cost of shop + Cost of shoe polish

Answer Key 65

ő

		₹		
		1	1	
	3	1.	7	5
	4	1.	2	5
_	5	2.	0	0
1	2	5.	0	0

= ₹31.75 + ₹41.25 + ₹52.00

Money given to shopkeeper = ₹200 Money he will get back = Money given to the shopkeeper – Money spent

		₹	
		9	
	1	10	10
	X	Ø	Ø
_	1	2	5
	0	7	5

Answer: Ajay will get back ₹75.

(d) Length of cloth: 78.66m

Length of cutted piece: 15.76

Length of cloth left: Length of cloth – Length of cutted piece

		m		
		7	16	
	7	8.	6	6
_	1	5.	7	6
	6	2.	9	0

= 78.66m - 15.76m

= 62.90m

Answer: 62.90m in the length of left cloth.

(e) 12.67 – 2.964 Converting into like fraction

Answer: 9.706 should added to 2.964 to get 12.670.

(f) Total weight of three boys: 99.94kgWeight of first boy: 35.82kgWeight of second boy: 41.03kg

Weight of third boy: Weight of three boys – [Weight of first boy + Weight of second boy]

		kg					kg		
	3	5.	8	2				8	14
+	4	1.	0	3		9	9.	9	¥
	7	6.	8	5	_	7	6.	8	5
						2	3.	0	9

= 99.94 kg - [35.82 + 41.03 kg]

Answer: Weight of third boy is 23.09kg

Exercise 6.6

- 1. (a) $0.6 \times 6.0 = 6$ [When we multiply a number by 10, the decimal point in the multiplicand move to the right by ones place]
 - (b) 9.7 × 10 = 97.0 = 97 [When we multiply a number by 10, the decimal point in the multiplicand move to the right by one place]
 - (c) $86.05 \times 10 = 860.5$
 - (d) $6.567 \times 10 = 65.67$
 - (e) $0.45 \times 100 = 45.7$ [When we multiply a number by 100 the decimal point in the the multiplicand more to the right by two places]

Mathematics-5

- (f) $9.005 \times 100 = 900.5$ [When we multiply a number by 100 the decimal point in the multipliand move to the right by two places]
- (g) $5.931 \times 100 = 593.1$ [When we multiply a number by 100 the decimal point in the multiplicand move to the right by two places]
- (h) $27.006 \times 1000 = 27006$ [When we multiply a number by 100 the decimal point in the multiplicand move to the right by three places
- (i) $0.546 \times 100 = 546$ [When we multiply a number by 100 the decimal point in the multiplicand move to the right by two places]

2. (a)
$$86.0 \times 7$$

 $86.06 \times 7 = 602.42$ [Two decimal places]

						-
		4		4		
		8	6	0	6	
×					7	
	6	0	2	4	2	
60	6.66	×	17			
66	.66	× 1	7 =	= 11	32.2	22
[T	WO	dec	ima	l pla	aces	5]
		4	4	4		
		6	6	6	6	
×				1	7	
	1	1	1			
	4	6	6	6	2	
+	6	6	6	6	×	
1	1	3	3	2	2	
0.	687	×	15 =	= 10).30	5
		3	4	3		
		0.	6	8	7	
×				1	5	
	(1)	(1)	1			
	U	\bigcirc				
		3	4	3	5	
+	0	\smile	4 8	3 7	5 ×	
	$\frac{-}{60}$ (T) \times $\frac{+}{1}$ $0.$	6 66.66 [Two × 1 4 + 6 1 1 0.687	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

(d)	35	4.6	× 2	9 =	102	283	.4
			1		1		
			4	4	(5)		
			3	5	4.	6	
×					2	9	
			1				
		3	1	9	1	4	
+		7	0	9	2	×	
	1	0	2	8	3	4	-

(e)	23.645	×	66	
			\frown	1

			3	(5)	4	4	
			3	5	4	4	
			2	3.	6	4	5
×						9	9
			1				
		2	1	2	8	0	5
+	2	1	2	8	0	5	×
	2	3.	4	0	8	5	5

Answer Key

(f)	(f) 32.65×138							
32	.65	× 1	38 =	= 43	505.	70		
[2	dec	ima	l pl	aces	5]			
				1	1			
			2	5	4			
			3	2.	6	5		
×				1	3	8		
	1	2	1					
		2	6	1	2	0		
		9	7	9	5	×		
+	3	2	6	5	×	×		
	4	5	0	5	7	0	-	

(g) 96.72 × 162 96.72 × 162 = 15668.64 [2 decimal places] (4)(4)(1)(1)(1)96.72 1 6 2 Х (1)(1)1 9 3 4 4 5 8 0 3 2 × + 9 6 7 2 × Х 1 5 6 6 8 6 4

(h) $0.465 \times 118 = 54.870$

			5	4	
		0.	4	6	5
×			1	1	8
	1	1			
		3	7	2	0
		4	6	5	×
+	4	6	5	×	×
	5	4	8	7	0

3. (a) 18.6 × 1.3

	3	4	3	
		1	8.	6
×			1.	3
	1	1		
		5	5	8
+	1	8	6	×
	2	4	1	8
	_			


$$18.6 \times 1.3 = 24.18$$

[1 decimal place + 1 decimal place = 2 decimal places] (b) 3.5 × 0.4

		2	
		3	5
×		0	4
	1	4	0
+	0	0	×
	1	4	0

$$3.5 \times 0.4 = 1.40$$

[1 decimal place + 1 decimal place = 2 decimal places]

(c) $8.6 \times 1.6 = 13.76$ [1 decimal place + 1 decimal place] $\times \frac{3}{8.6}$ $\times \frac{1.6}{5.1.6}$	(f) 10.081×1.2 (f) 10.081×1.2 1 0 0 8 1 × 1 2 2 0 1 6 2
$+$ 8 6 \times	$\frac{+1}{1} \begin{array}{cccccccccccccccccccccccccccccccccccc$
1 3 7 6	$\frac{1}{10.081 \times 1.2}$
(d) 200.5×2.5	= 12.0972
(1) (2)	[3 decimal place + 1 decimal place = 4 decimal places] (g) 1.6 × 0.15
2 0 0 . 5 × 2 . 5	3
$\frac{2}{10025}$	1.6
$+ 4 0 1 0 \times$	× 0 1 5
5 0 1 2 5	
$200.5 \times 5.5 = 501.25$	8 0
[1 decimal place + 1 decimal palce = 2	$1 6 \times$
decimal places] (e) 420.06×0.03	$+$ 0 0 \times \times
	0 2 4 0
	$1.6 \times 1.5 = 0.240$
× 0 0 3	[2 decimal places $+ 1$ decimal place $= 3$
1 2 6 0 1 8	decimal places]
0 0 0 0 0 \times	(h) 0.20×0.05
$+$ 0 0 0 0 0 \times \times	
0 1 2 6 0 1 8	× 0.05
420.06×0.03	$^{-}$ 0.03
= 12.6018	
[4 decimal places] 2 decimal places + 2 decimal places	$\frac{+ \ 0 \ 0 \ 0 \ \times \ \times}{0 \ 0 \ 1 \ 0 \ 0}$
	$0.20 \times 0.05 = 0.0100$

[2 decimal places + 2 decimal places = 4 decimal places]

•

Answer Key 69

(i) 0.182×0.62

				4	1	
				1		
			0.	1	8	2
×				0.	6	2
			1			
			0	3	6	4
		1	0	9	2	×
+	0	0	0	0	×	×
	0	1	1	2	8	4

 $0.182 \times 0.62 = 0.11284$

[3 decimal places + 2 decimal places = 5 decimal places]

4. (a) (i) Number of registers: 3

Cost of register: ₹35.50

Cost of registers: Cost of 1 register \times Number of register

			₹		
		1	1		
		3	5	5	0
×					3
	1	0	6	5	0

 $35.50 \times 3 = 106.50$

[2 decimal places]

= ₹35.50 × 3

(ii) Number of water bottles: 4

Cost of 1 water bottle = $\gtrless 218.25$

Money paid for water bottles: Number of water bottle × Cost of 1 bottle

			₹		
		3		2	
	2	1	8	2	5
×					4
	8	7	3	0	0

 $= 218.25 \times 4 = 873.00$ [2 decimal places] (b) Number of balls: 10 Weight of 1 ball: 306.8g Wegiht of 10 balls: Number of balls × Wegiht of 1 ball = 10×306.8 [When we multiply a number by 10, the decimal point in the multipliand and move to the right by ones place] = 3068Answer: 10 balls will weight 30680g (c) Cost of ribbon per metre: ₹11.50 Length of ribbon bough by Rashi: 16.25m Money paid for Ribbon: Cost of ribbon per metre × Length of ribbon = ₹11.50 × 16.25m [2 decimal places + 2 decimal places = 4 decimal places] (3) (1)2 11.50

				-	• •	0	v
×				1	6.	2	5
		1					
				5	7	5	0
			2	3	0	0	×
		6	9	0	0	×	×
+	1	1	5	0	\times	×	×
	1	8	6	8	7	5	0

Answer: Rashi paid ₹186.8750 for Ribbon.

Exercise 6.7

- 1. (a) $53.6 \div 10 = 5.36 = [When we divide a decimal number by 10, the decimal points shifts to the left by one place]$
 - (b) $6.65 \div 10 = 0.665 \div 10 = 0.665$ [When we divide a decimal number by 10, the decimal points shifts to the left by one place]

70 Mathematics-5

- (c) $0.56 \div 10 = 00.56 \div 10 = 0.056$ [When we divide a decimal number by 10, the decimal points shifts to the left by one places]
- (d) $354.5 \div 100 = 3.545$ [When we divide a decimal number by 100, the decimal points shifts to the left by two place]
- (e) $0.5 \div 100 = 000.5 \div 100 = 0.005$ [When we divide a decimal number by 100, the decimal points shifts to the left by two places]
- (f) $235.4 \div 100 = 2.354$ [When we divide a decimal number by 100, the decimal points shifts to the left by two places]
- (g) $364.0 \div 1000 = 03640 \div 1000 \div 0.364$ [When we divide a decimal number by 1000, the decimal points shifts to the left by three places]
- (h) $87.0 \div 1000 = 0087.00 \div 1000 = 0.087$ [When we divide a decimal number by 1000, the decimal points shifts to the left by three places]
- (i) $0.5 \div 1000 = 000.5 \div 1000 = 0.005$ [When we divide a decimal number by 1000, the decimal points shifts to the left by three places]

2. (a)
$$3.752 \div 4 = 0.938$$

$$\begin{array}{r}
0.938 \\
4 \overline{3.752} \\
-36 \\
\hline
15 \\
-12 \\
\hline
32 \\
-32 \\
\hline
0
\end{array}$$

(b)
$$0.985 \div 5 = 0.197$$

 $5 \overline{)0.985} - 5 \downarrow |$

(c)
$$3511.20 \div 37 = 94.89$$

 94.89
 $37)\overline{3511.20}$
 $-333 \downarrow$
 181
 $-148 \downarrow$
 320
 $-296 \downarrow$
 350
 -333
 -333
 -333
 -333
 -333
 -333
 -333
 -333
 -333
 -333
 -333
 -333
 -333
 -333
 -333
 -333
 -333
 -333
 -333
 -36653
 $16)\overline{426.448} \div 16 = 26.653$
 26.653
 $16)\overline{426.448} \div 16 = 26.653$
 $-96 \downarrow$
 104
 $-96 \downarrow$
 104
 $-96 \downarrow$
 $-20 \downarrow$
 176
 -160
 -160
 -160
 -160
 -16
 $-64 \downarrow$
 $-64 \downarrow$
 $-64 \downarrow$
 $-32 \downarrow$

(

Answer Key 71

(g)	15.606 ÷ 34
	0.459
	34)15.606
	- 136
	200
	<u> </u>
	306
	- 306
	0

 (a) Weight of potaoes: 209.7kg Number of sacks: 9

Weight of each sack: Total weight ÷ Number of sacks

= 209.7kg $\div 9$

 $\begin{array}{r}
23.3 \\
9)209.7 \\
-18 \\
29 \\
-27 \\
\hline
27 \\
-27 \\
\hline
0
\end{array}$

Answer: Weight of each sack is 23.3kg

(b) Length of rope: 22.48m 5.62 Number of parts rope 4)22.48 is divided: 04 - 20 Length of each part: 24 Length of rope ÷ Number - 24 of parts 08 $= 22.48m \div 4$ - 8 0 = 5.62m

Answer: Length of each part is 5.62m

(c) Quantiy of Juice: 2.16l

Number of kids juice is divided: 04 Quantity of Juice each child got: Quantity of Juice \div Number of kids = $2.16l \div 4$ = 0.54l

$$\begin{array}{r}
0.54 \\
4 \overline{\smash{\big)}\ 2.16} \\
- 20 \downarrow \\
\hline
16 \\
- 16 \\
\hline
0
\end{array}$$

Answer: Each child got 0.54l of Juice.

Learning Updates

1.			
	Numbers	Decimal form	Fraction form
(a)	6.538	6 + 0.5 + 0.03 + 0.008	$\frac{6 + \frac{5}{10} + \frac{3}{100} + \frac{8}{1000}}{\frac{8}{1000}}$
(b)	975.66	900 + 70 + 5 + 0.6 + 0.06	$900 + 70 + 5 + \frac{6}{10} + \frac{6}{100}$
(c)	58.027	50 + 8 + 0.02 + 0.007	$\frac{50 + 8 + \frac{2}{100} + }{\frac{7}{1000}}$

(b)
$$5.07$$
 5.50
(c) 9.32 9.23
(d) 40.94 44.09

(a) 8.23, 8.023, 8.32, 8.203, 8.302, 8.032
Converting into like fractions: 8.230, 8.023, 8.320, 8.203, 8.302, 8.032
8.023 < 8.032 < 8.203 < 8.230 < 8.302 < 8.320
or 8.023 < 8.032 < 8.203 < 8.233 < 8.302 < 8.32

Mathematics-5

- (b) 77.09, 70.99, 77.9, 79.77, 77.99, 79.07
 Converting into like fractons: 77.09, 70.99, 77.90, 79.77, 77.99, 79.07
 70.99 < 77.09 < 77.90 < 77.99 < 79.07 < 79.77
 or 70.99 < 77.09 < 77.9 < 77.99 < 79.07
 < 79.77
- 4. (a) 9 hundreths
 - (b) 3
 - (c) 1 decimal place + 3 decimal places = 4 decimal places

(d)
$$1.93 = 1\frac{93}{100}$$

- 5. (a) True
 - (b) False as there is 1 decimal place
 - (c) False
 - (d) True, as they have equal decimal places.
- **6.** (a) 10
 - (b) 1000
 - (c) 100
 - (d) 100
- 7. (a) 100
 - (b) 1000
 - (c) 513.6
 - (d) 0.000101
- 8. (a) 0.2×0.3

 $\begin{array}{c} 0 & . & 2 \\ \times & 0 & . & 3 \\ \hline 0 & 6 \\ + & 0 & 0 & \times \end{array}$

 $0.2 \times 0.3 = 0.06$

[1 decimal place + 1 decimal place = 2 decimal places]

(b) 0.4×0.5 (2) 0.4 0.3 × 2 0 $+ 0 0 \times$ 0 2 0 $0.4 \times 0.5 = 0.20$ [1 decimal place + 1 decimal places = 2 decimal places] $(c) 0.09 \times 0.08$ (3) 0 0 9 0 0 8 Х 0 7 2 0 0 0 × $+ 0 0 0 \times$ X 0 0 0 7 2 $0.09 \times 0.08 = 0.0072$ [2 decimal places + 2 decimal places = 4 decimal places] (d) 0.002×0.2 0 0 0 2 0 2 \times 0 0 0 4 $+ 0 0 0 0 \times$ 0 0 0 0 4 $0.002 \times 0.2 = 0.0004$ [3 decimal places + 1 decimal place = 4decimal places]

Answer Key 73

9.	(a) $0.288 \div 2 = 0.144$
	$2 \frac{0.144}{0.288}$
	$2) 0.288 - 2 \downarrow$
	08
	$\frac{-8!}{08}$
	$\frac{-8}{0}$
	(b) $5.94 \div 3 = 1.98$ 1.98
	3)5.94
	29 - 27▼
	24
	240
	(c) $13.03 \div 25 = 0.5212$
	0.5212
	25) 13.03 - 125
	53
	$\frac{-50}{30}$
	25
	50 - 50
	(d) $6819.8 \div 43 = 158.6$
	158.6
	$43\overline{\big)} \begin{array}{c} 6819!8 \\ -43 \\ \end{array}$
	251
	$\frac{-215}{369}$
	_ 344
	258 - 258
	$\frac{-238}{0}$

10	 (a) Distance walked in morning: 2.035km Distance walked in evening: 1.007km Total distance covered: Distance covered in morning + Distance covered in evening
	= 2.035 km + 1.007 km
	= 3.042km 2
	Answer: Rohyesh total walked 3.042km.2 . 0 3 5
	(b) Length of cloth: $20.05m + 1 \cdot 0 = 0 \cdot 7$ $3 \cdot 0 = 4 \cdot 2$
	Length of cutted cloth: 4.50 m
	Length of cloth left: Length of cloth - Length of cutted cloth
	m
	9
	(1) 10 (0)
	$\mathcal{Z} \mathcal{N}. \mathcal{N} 5$
	- 4.50
	1 5. 5 5
	= 20.05 m - 4.50 m
	= 15.55m
	Answer: 15.55m of cloth is left.
	(c) Amount of pulses family eats every day: 1.3kg
	Number of days in week: 7
	Amount of pulses family eats in week:
	Pulses in a day × Number of days in a week
	$= 1.3 \text{kg} \times 7$
	= 9.1kg [1 Decimal place]
	1.3
	× 7
	9 1
	Answer: The family eats 9.1kg in a week.

Mathematics-5

.

74

••••

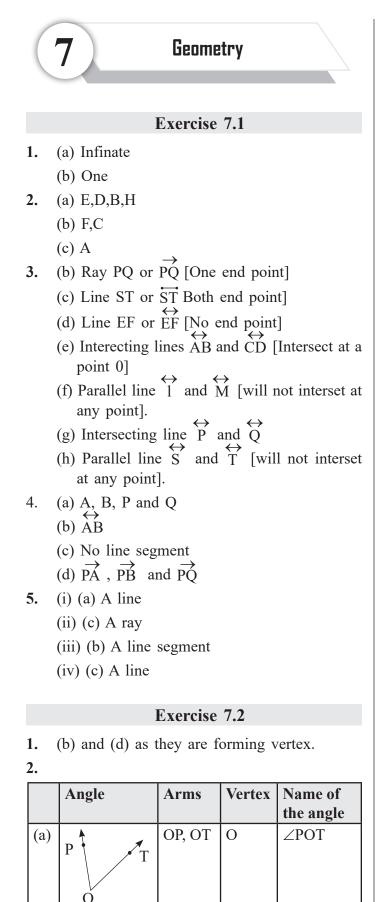
(d) Number of water bottles: 8

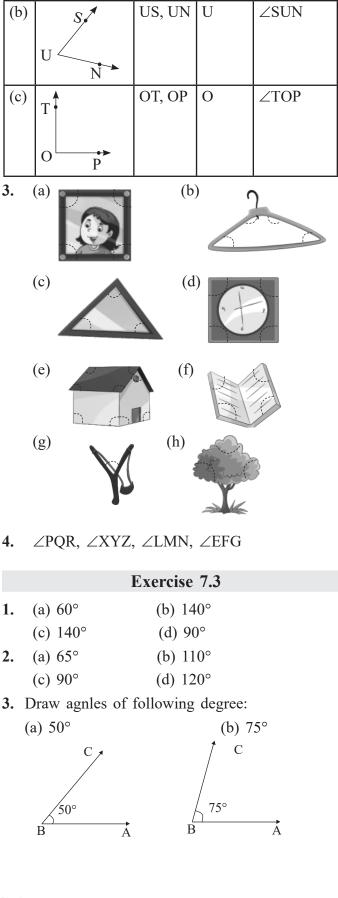
Total capacity of water bottles: 9.6l

Capacity of 1 water bottle: Total capacity ÷ Number of water bottles

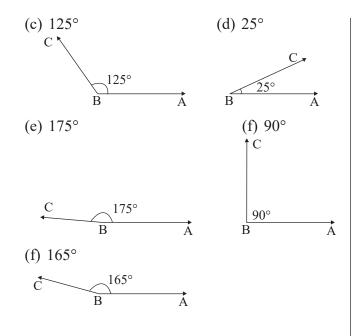
$$\begin{array}{c}
1.2 \\
8 \overline{\smash{\big)}} 9.6 \\
- 8 \\
\hline
16 \\
\hline
16 \\
\hline
- 16 \\
\hline
0 \\
= 9.6l \div 8 \\
= 1.2l
\end{array}$$

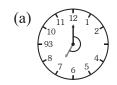
Answer: Capacity of 1 water bottle is 1.2l


Multiple Choice Questions

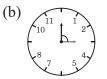

- 1. $60 + 6 + \frac{3}{10} + \frac{2}{1000} = 60 + 6 + 0.3 + 0.002$ = 66.302 (d) 66.302
- 2. 1 paise = ₹ $\frac{1}{100}$ 825 paise = ₹ $\frac{825}{100}$ = ₹8.25 (a) 8.25
- 3. 28 ÷ 1000 = 0.028 [When we divide a decimal number by 1000, the decimal points shifts to the left by three place]
 - (a) 0.028
- 4. (c) 8 hundreths
- 462.5 [When we divide a decimal number by 10, the decimal points shifts to the left by one place]
 - (b) 462.5
- **6.** $5.46 \times \underline{10} = 546 \div 6$

(a) 10

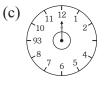

Skills Check (a) 2.56 + 4.07 - 3.590 = 3.040Converting into like fractions: 2.560 + 4.070 - 3.590(1)5 13 2.5 6. 6 3 0 6 0 3.5 +4. 0 7 9 0 0 3. 0 6. 6 3 0 4 0 (b) 72.36 - 5.07 + 21.109 = 88.399Converting into like fractions: 72.360 -5.070 + 21.1096 12 2 16 67. 0 72.360 2 2 1. 1 9 0 +5.0 7 0 8 8. 3 9 9 67.2 9 0 (c) $18 - 4.2 \div 6 + 1.3 \times 0.4$ 18 - 0.7 + 0.5218 - 0.7 + 0.5217.3 + 0.53= 17.82(d) $6.4 \div 1.6$ of $5 + 1.3 \times 3.1 - 0.07$ $4 \times 5 + 1.3 \times 3.1 - 0.07$ 20 + 4.03 - 0.0724.03 - 0.07= 23.96(e) $50.3 - 5.6 \div 0.7 \times 1.6$ of 35 $50.3 - 8 \times 1.6 \times 3.5$ 50.3 - 44.80= 5.50(f) 23.6 - 0.6 of $(9.4 - 5.6) + 0.6 \times 3.06$ $23.6 - 0.6 \times (3.8) + 0.6 \times 3.06$ 23.6 - 2.28 + 1.836= 23.60 - 2.28 + 1.83621.32 + 1.836= 21.320 + 1.836= 23.156



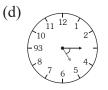
Mathematics-5



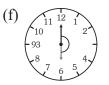
Exercise 7.4



1.


Answer: Reflex Angle

Answer: Right angle


Answer: Complete angle

Answer: Acute angle

Answer: Straight angle

- 2. (a) 30° = Acute angle [Less than 90°]
 - (b) 95° = Obtuse angle [More than 90° and less than 180°]
 - (c) 108° = Obtuse angle [More than 90° and less than 180°]
 - (d) 180° = Straight angle [180°]
 - (e) 90° = Right angle [90°]
 - (f) 360° = Complete angle [360°]
 - (g) 80° = Acute angle [Less than 90°]
 - (h) 125° = Obtuse angle [More than 90° and less htan 180°]
 - (i) 25° = Acute angle [Less than 90°]
 - (j) 265° = Reflex angle [More than 180° and less than 360°]
- **3.** (a) \angle DEF: Acute angle
 - (b) \angle ABC: Straight angle
 - (c) \angle XYZ: Right angle
 - (d) \angle MNO: Reflex angle

Exercise 7.5

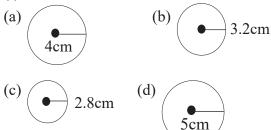
- (a) A, B, C
 (b) ∠ABC, ∠BCA, ∠CAB
 (c) AB, BC, CA
- (a) Equilateral triangle [AB = BC = CA = 3cm]
 (b) Scalene triangle [All sides are of different measure]
 - (c) Isoscles triangle [PQ = QR = 4cm]

(d) Scalene triangle [All sides are of different measure]

(e) Equilateral triangle (ED = DF = FE = 4cm)

(f) Scaleme triangle [all sides are of different measure]

- 3. (a) Yes, as the sum of angles = 180°
 - (b) No, as the sum of angles is not 180°



- (c) Yes, as the sum of angles = 180°
- (d) No, as the sum of angles is not 180°
- 4. (a), (b), (d) are the possible triangles as the sum of measures of any two sides of a triangles is greater than the measure of third side.
- **5.** (a) (iv) 3
 - (b) (ii) 1
 - (c) (ii) acute angled triangle
 - (d) (iii) Scalence triangle
 - (e) (ii) 1

Execise 7.6

- **1.** (a) 0
 - (b) AB
 - (c) OA, OB and OP
 - (d) CD, AB
 - (e) A, P, D, B and C
 - (f) R and Q
 - (g) O, M, N, F
 - (h) 2
 - (i) Chord
 - (j) Diameter
- 2. (a) False, as the diameter of the circle is double the radius
 - (b) True
 - (c) False, as a circle has only 1 centre.
 - (d) True
 - (e) False, as it is not necessary that every chord of the circle will pass throught the centre of the circle.

3.

4. Radius =
$$\frac{\text{Diameter}}{2}$$

(a) D = 6cm
R = $\frac{6}{2}$ cm
R = 3cm
(b) D = 9cm
R = $\frac{9}{2}$ cm
R = 4.5cm
(c) D = 23cm
R = $\frac{23}{2}$ cm
R = 11.5cm
(d) D = 16cm
R = $\frac{16}{2}$ cm
R = 8cm
5. Circumference = r × 6.28
(a) R = 14cm
C = 14 × 6.28
C = 87.92cm

(b)
$$R = 2.1 cm$$

$$C = 2.1 \text{cm} \times 6.28$$

$$C = 13.188cm$$

- (c) R = 3.5 cm
 - $C = 3.5 cm \times 6.28$
- = 21.98cm
- (d) R = 7cm

$$C = 7cm \times 6.28$$

C = 43.96cm

Learning Updates

- (a) Vertex
- (b) Degree
- (d) Complete
- (e) different (f) 6.28
- (g) 2

1.

- 2. (a) False, as one point of the radius lies on the centre.
 - (b) True

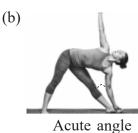
(c) Straight

- (c) True
- (d) false, as an equilateral triangle is a triangle in which all three sides are equal
- (e) True
- (f) True

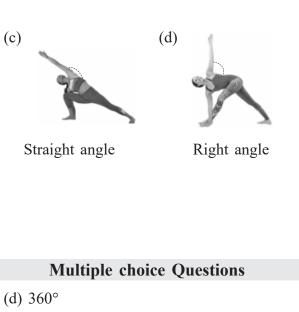
78 Mathematics-5

3.
$$\angle ABC = 45^{\circ}, \angle PQR = 30^{\circ}, \angle STU = 105^{\circ}, \angle RST = 120^{\circ}, \angle DEF = 90^{\circ}$$

4. A
B
95°
B


- (a) Angle (b) and (c) Cannot be measure of the three angle of a triangle as their sum is not equal to 180°.
 - (b) $\angle P + \angle Q + \angle R = 75^{\circ} + 60^{\circ} + 50^{\circ} = 185^{\circ},$ 185 ° \neq 180°
 - (c) $\angle X + \angle Y + \angle Z = 80^{\circ} + 40^{\circ} + 45^{\circ} = 165^{\circ},$ $165^{\circ} \neq 180^{\circ}$
- 6. Circumference = $r \times 6.28$
 - (a) R = 7cm
 - $C = 7cm \times 6.28$
 - C = 43.96cm
 - (b) R = 6.3 cm
 - $C = 6.3 cm \times 6.28$
 - C = 39.564 cm
 - (c) R = 5.6 cm
 - $C = 5.6 \text{cm} \times 6.28$ C = 35.168 cm

$$C = 35.168 cm$$


(d)
$$R = 4.2 cm$$

 $C = 4.2 cm \times 6.28$

$$C = 26.376cm$$

7. (a)

Obtuse angle

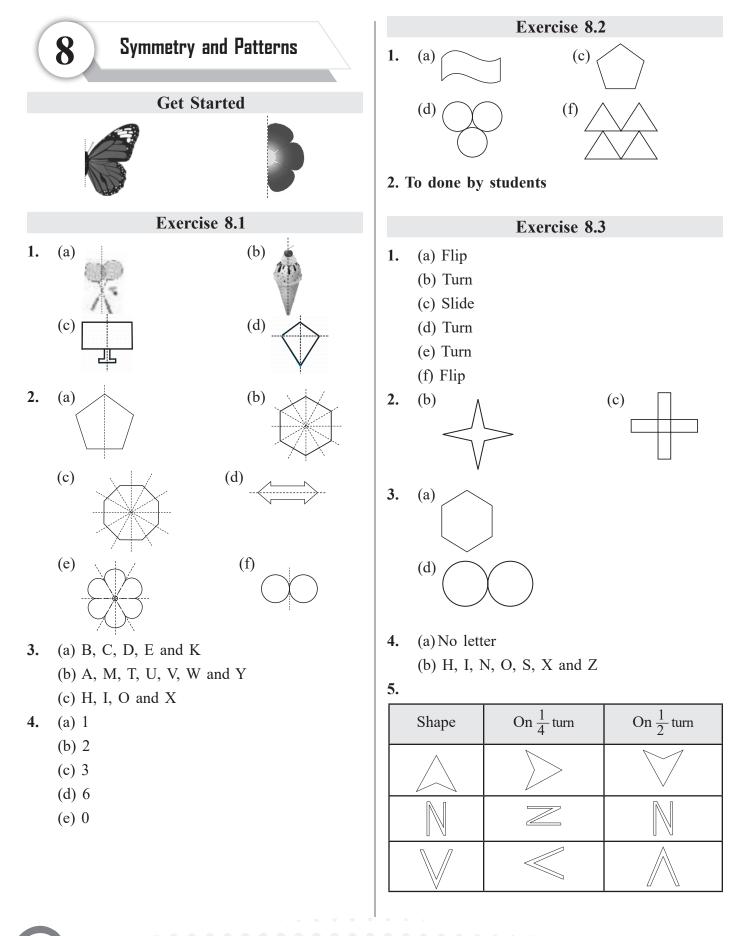
- 2. (c) reflex angle
- **3.** (d) ↓↔

1.

- **4.** (b) always greater than the length of the third side.
- 5. Sum of every angle of a triangle is 180° Let the third side be $\angle x$. $40^{\circ} + 35^{\circ} + \angle x = 180^{\circ}$
 - $75^{\circ} + \angle X = 180, \ \angle X = 180^{\circ} 75^{\circ}, \ \angle X = 105^{\circ}$ (d) 105°

Skills Check

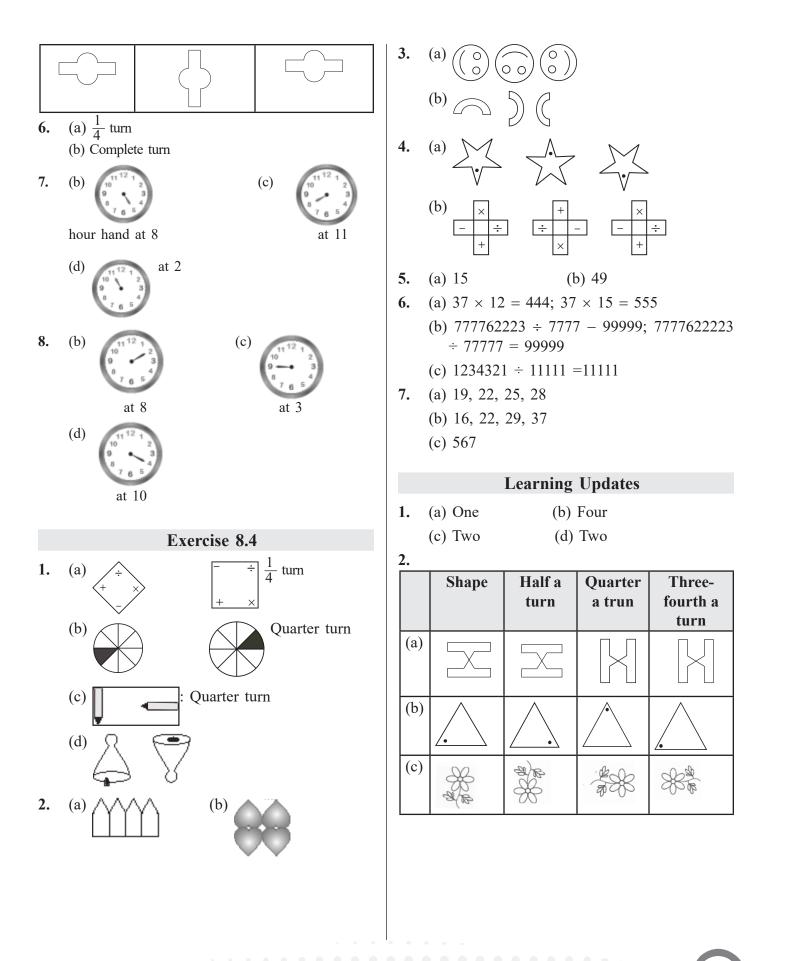
1. 12 to 3


1 right angle

6 to 9

1 right angle

- 12 to 9
- 2 right angles
- Answer: The hour hand turned by 2 right angles
- 2. 11 triangles



Mathematics-5

80

.

Answer Key 81

Multiple Choice Question

Skills Check

Answer Key

a

82

- 1. Answer: (a)
- 2. Answer: (b) 🗰
- **3.** Answer: (a) $2\frac{1}{7}$
- 4. Answer: (b) 36

9

Measurement

Get Started

- 1. (a) Juice in litres as we measure liquid in litres.
 - (b) Rice in kilogram as we measures weights in kilograms
 - (c) Cloth Pieces in meters as we measure length in metre.

Exercise 9.1

1	
I	٠

	Pen		Length	
		in cm and mm	cm	mm
(a)		3 cm and 6mm	3	6
(b)		4 cm and 6mm	5	6
(c)		5cm and 6mm	5	6
(d)		6cm and 6mm	6	6

2.

	Length in full form	Length in bigger units	Length of smaller units
(a)	48m 24cm	$1 \text{ cm} = \frac{1}{100} \text{ m}$ $48 \text{ m} 24 \text{ cm} = 48 + \frac{24}{100} \text{ m}$ $= 48 \text{ m} + 0.24 \text{ m}$ $= 48.24 \text{ m}$	$1m = 100cm: 48m 24cm = 48 \times 100cm$ 24cm = 4800cm + 24cm = 4824cm
(b)	$55.36m$ $1m = 100cm, 55.365m$ $55m + 0.36m = 55m + 0.36 \times 100cm$ $= 55m + 36cm$ $= 55m 36cm$	55.36m	1m = 100cm 55.36m = 55.36 × 100cm = 5536cm
(c)	$1832cm = 1800cm + 32cm$ $1cm = \frac{1}{100}$ $1800cm + 32cm = \frac{1800}{100}m + 32cm$ $= 18m 32cm$	$1 \text{ cm} = \frac{1}{100} \text{ m}$ $18\text{ m} 32\text{ cm} = 18\text{ m} + \frac{32}{100}\text{ m}$ $= 18\text{ m} + 0.32\text{ m}$ $= 18.32\text{ m}$	1832cm
(d)	24cm 4mm	$1 \text{ mm} = \frac{1}{10} \text{ cm}$ $24 \text{ cm} 4 \text{ mm} = 24 \text{ cm} + \frac{4}{10} \text{ cm}$ $= 24 \text{ cm} + 0.4 \text{ cm}$ $= 24.4 \text{ cm}$	$1 \text{ cm} = 10 \text{ mm}$ $24 \text{ cm} 4 \text{ mm} = 24 \times 10 \text{ mm} + 4 \text{ mm}$ $= 240 \text{ mm} + 4 \text{ mm}$ $= 244 \text{ mm}$

83 Mathematics-5

(e)	$19.3 cm = 19 cm + 0.3 cm$ $1 cm = 10 mm$ $19 cm + 0.3 cm = 19 cm + 0.3 \times$ $10 mm$ $= 19 cm + 3 mm$ $= 19 cm 3 mm$	19.3cm	$19cm 3mm = [1cm = 10mm] = 19 \times 10mm + 3mm 190mm + 3mm = 193mm$
(f)	27cm 3mm	$1 \text{mm} = \frac{1}{10} \text{cm}$ 27 cm 3 mm = 27 cm + $\frac{3}{10}$ cm = 27 cm + 0.3 cm = 27.3 cm	$1 \text{cm} = 10 \text{mm}$ $27 \text{cm} 3 \text{mm} = 27 \times 10 \text{mm} + 3 \text{mm}$ $= 270 \text{mm} + 3 \text{mm}$ $= 273 \text{mm}$

4.

- **3.** (a) 18km to hm 1km = 10hm 18km = 18×10 hm = 180hm (b) 12km to dm 1km = 1,0000dm 12km = $12 \times 10,000$ = 120000dm (c) 25dam to m 1 dam = 10 m $25 \text{ dam} = (25 \times 10) \text{m}$ = 250m(d) 57dm to mm 1 dm = 100 mm $57dm = 57 \times 100m$ = 5700mm (e) 42m to cm 1m = 100cm $42m = 42 \times 100cm$ $42m = 42 \times 100cm$ = 4200 cm(f) 3450cm to km $1\mathrm{cm} = \frac{1}{100000}\mathrm{km}$ 3450cm = $\frac{3450}{100000}$ km
 - = 0.3450km

(g) 300mm into dam 1mm = $\frac{1}{1000}$ km $300m = \frac{300}{1000} dam$ = 0.3 dam(h) 326dam to km $1 \text{dam} = \frac{1}{100} \text{km}$ 326dam $= \frac{326}{100}$ km = 3.26km (i) 2700cm to dam $1 \text{cm} = \frac{1}{1000} \text{dam}$ 2700cm = $\frac{2700}{1000}$ dam = 2.7dam (a) 6.34m = 6m + 0.34m1m = 100cm $6m + 0.34 = 6m + 0.34 \times 100cm$ = 6m + 34cm= 6m 34cm(b) 9.3km = 9km + 0.3km 1 km = 1000 m $9km + 0.3km = 9km + 0.3 \times 1000m$ = 9km + 300m = 9km 300m (c) 8.2cm = 8cm + 0.2cm 1 cm = 10 mm $8cm + 0.2cm = 8cm + 0.2 \times 1000mm$ = 8 cm + 2 mm= 8 cm 2 mm

Answer Key

(d)
$$1 \text{ km} = 1000\text{ m}$$

 $4.975 \text{ km} = 4.975 \times 1000\text{ m}$
 $= 4975 \text{ m}$
(e) $1 \text{ m} = \frac{1}{1000} \text{ km}$
 $650 \text{ m} = \frac{650}{1000} \text{ km}$
 $= 0.650 \text{ km}$
(f) $1 \text{ m} = 100 \text{ cm}$
 $2.94 \text{ m} = 2.94 \times 100 \text{ cm}$
 $= 294 \text{ cm}$
(g) $1 \text{ km} = 1000 \text{ m}$
 $18.3 = 18.3 \times 1000 \text{ m}$
 $= 18300 \text{ m}$
(h) $1 \text{ m} = \frac{1}{1000} \text{ km}$
 $4003 \text{ m} = \frac{4003}{1000} \text{ km} = 4.003 \text{ km}$
 $4003 \text{ m} = \frac{4003}{1000} \text{ km} = 4.003 \text{ km}$
1. (a) $\boxed{\text{m} \text{ cm}}$
 $\boxed{1} \text{ (l)}$
 $6 \text{ 4} 3 \text{ 6}$
 $1 \text{ 6} 0 \text{ 5}$
 $+ 0 \text{ 8} 3 \text{ 1}$
 $8 \text{ 8} 7 \text{ 2}$
 $= 88 \text{ m} 72 \text{ cm}$
 $1 \text{ cm} = \frac{1}{100} \text{ m}$
 $88 \text{ m} 72 \text{ cm} = \frac{72}{100} \text{ m}$
 $= 88 \text{ m} + 0.72 \text{ m}$
 $= 88.72 \text{ m}$
(b) $\boxed{\text{ km} \text{ m}}$
 $\boxed{1} \text{ (l)} \text{ (l)}$
 $0 \text{ 5} 2 \text{ 4} \text{ 8}$
 $1 \text{ 1} 0 \text{ 5} \text{ 5}$
 $+ 3 0 0 \text{ 6}$
 $1 \text{ 9} 3 0 \text{ 9}$
 $19 \text{ km} 309 \text{ m}$
 $1 \text{ m} = \frac{1}{1000} \text{ km}$
 $19 \text{ km} 309 \text{ m} = 19 \text{ km} + \frac{309}{1000} \text{ m}$

 $\frac{19\text{km } 309\text{m} = 19\text{km} + \frac{30}{100}}{19\text{km} + 0.309} = 19.309$

(c) km hm dam m 1 (1)(1) 0 4 0 0 8 8 3 3 0 6 0 0 5 8 +12 1 0 0 1 5 1 = 12km 1hm 10dam 10m $1hm = \frac{1}{10}, 1dam = \frac{1}{100} km \ 1m = \frac{1}{1000} km$ $= 12km + \frac{1}{10} km + \frac{10}{100} km + \frac{10}{1000} km$ = 11km + 0.1km + 0.10km + 0.010km = 12.21km (a) m mm (17) (10) 6 7 Ø 7 8 1 9 2 4 8 3 3 1 2 9 7 7 1 = 29m 791mm $1mm = \frac{1}{1000}m$ $29m\ 771m = 29m$ $\frac{771}{1000}m = 29m + 0.771m$ = 29.771m (b) km m 9 (i) 10 (i) X Ø A 6 0 0 0 3 6 0 0 0 0 6 8 1 0 0 68km 100cm $1m = \frac{1}{1000} km$ $68\text{km } 550\text{m} = 68\text{km} + \frac{100}{1000}\text{km}$ = 68km + 0.100km = 68.100km

2.

Answer Key 85

....

(\cdot)							_
(c)		kn	n		m	l	
					4) (10	
		2	6	9	Ź	ý	
	_	1	1	9 3 6	2	5	
		1	5	6	2	5	
1	5kı						
1	m	= -	1	$\frac{1}{2}$ km	1		
) = 1:		+ -	625
				0.62			100
=	= 05	.62	5kr	n			
(a)				m		m	1
			(1		(1)	
			\sim	6.	\smile	8	
	×				2		
			(1)			1
			\smile		2	Q	
		3		6 5			
	Ľ.	3		5	8	8	-
				1	0	0	
	= 34						
	m 6cn						
	.6m						
			100). 28n	n		
	= 16			.201			
(b)							
			ĸ	m		m (1)	
			2	3.	1	0	5
	×		-		*	1	2
			4	6	2	1	0
	+	2	3	1	0	5	×
		2	7	1 7	2	6	0
=	= 27	7.2	260				
	m						
2	.3kr	n 1	05r) n =	23	$+\frac{1}{10}$	$\frac{05}{000}$
	= 23					1(.00

	(c)		ľ	n		mm	1		
						(1)			
			1	6.	0	0	8		
		×				1	5		
					1				
			8	0	0	4	0		
		+ 1 2	6	0	0	8	×		
		2	4	0	1	2	0		
	=	= 240.						1	
	1	lmm =	= 10	$\frac{1}{100}$	n				
		l6m 8n				$+\frac{1}{1}$	8	-m	
		= 16m				1	000		
	=	= 16.00	8m	L					
4.	(a)	1cm =	$\frac{1}{10}$	m					14.14
		98m 98				+ -	$\frac{98}{00^{-1}}$	m	43) 98.98
		= 98m				1	00		28
	=	= 98.98	m						-28
	=	= 98.98	m	÷ 43	,				09
	=	= 14.14	4m						<u> </u>
	(b)	1mm =	= 1	$\frac{1}{0}$ cn	1				28
	4	49cm 8	mn	n = 1	49ci	m +	$\frac{8}{10}$	cm	$\frac{-28}{0}$
		= 49cm					10		
	=	= 49.8c							
			.45						
		43) 49	!8 						
		<u>- 4</u>							
		09 - 8							
			18						
			16						
			20						
			$\frac{20}{0}$	_					
	_	= 12.4	U Son						
		1m = 12.4			n				
						4	327	1	
		9km 32 = 9km					000	-KIN	
		- 9km - 9.327			1117				
		2.521	1111	•					

Mathematics-5

•

86

••••

$$3.109
3) 9.327
-9
03
-3
027
-27
0
-27$$

= 3.109cm

5. (a) Length of one piece of ribbon: 3.12m Length of another piece of ribbon: 85cm Length of the resultant piece of ribbon: Length of first ribbon + Length of second ribbon

$$= 3.12 + 85 \text{ cm}$$

$$1 \text{ cm} = \frac{1}{100} \text{ m}$$

$$3.12 \text{ m} + 85 \text{ cm} = 3.12 + \frac{85}{100} \text{ m}$$

$$= 3.12 \text{ m} + 0.85 \text{ m}$$

$$= 3.97 \text{ m}$$

Answer: Length of resultant piece of ribbon is 3.97m

(b) Length of ribbon: 4m 20cm

Length of 40 such ribbons: Length of ribbon × 40 = 4m 20cm × 40 $1cm = \frac{1}{100}m$

 $4m \ 20cm = 4m + \frac{20}{100}m$ = 4m + 0.20m

= 4.20m

 $= 4.20 \text{m} \times 40 = 168.00$

[2 decimal places]

Length of 40 such ribbons is 168cm.

(c) Length of rope: 8m 20cm

Number of times rope was wrapped around the packet: 04

Length of rope if it was wrapped around once: Length of rope ÷ Number of times, it was wrapped

$= 8m \ 20cm \div 4$	2.05
$1 \text{cm} = \frac{1}{100} \text{m}$	4) 8.20
$8m\ 20cm = 8m + \frac{20}{100}m$	<u>- 8 </u>
= 8m + 0.20m	020
$= 8.20 \text{m} \div 4 = 2.05 \text{m}$	20
0.20111 1 2.00111	0

Answer: Length of ribbon if the rope was wrapped once is 2.05m

Exercise 9.3

1.	If cheetah can go 968km 12
	in 8 hours, then its speed $8)$ 968
	is [Speed = Distance \div $-8 \checkmark$
	Time] 16
	968km ÷ 8hours $-\underline{16} \checkmark$
	= 121kmph 08
	Answer: Speed of Cheetah -8 is 121kmph -0
2.	Distance = 289.8km
	Time = 3 hours Speed = $\frac{Distance}{Time}$
	96.6
	8)289.8
	- 27
	19
	<u> </u>
	18
	18
	$=\left(\frac{289.8}{3}\right)$ kmph = 96.6 kmph
	Answer: Speed of Ostrich is 96.6kmph
2	Speed: 80kmph

3. Speed: 80kmph

Time: 3 hours

Distance: Speed × Time

 $= (80 \times 3)$ km

= 240km

Answer: Distance covered by train in 3 hours at the speed of 80km per hour is 240km.

Answer Key

Mathematics-5

4. Time taken by Rabbit to cover 15 km = 1 hour

Time taken by Rabbit to cover 1 km = $\frac{1}{15}$ hours Time taken by Rabbit to cover 45km: Time taken to cover 1 km × 45 = $\left(\frac{1}{15} \times 45\right)$ hours = 3 hours Hence, the Rabbit took 3 hours to cover 45km.

5. Speed = 97kmph

1.

Distance = 582km Time = $\frac{\text{Distance}}{\text{Time}}$ Time: $\left(\frac{582}{97}\right)$ hours = 6 hours **Answer:** Swordfish will trake will take hour to cover 582km at the speed of 97 kmph

	Weight in full from	Weight in bogger units	Weight in smaller units
(a)	5kg 42g	$1g = \frac{1}{1000} kg$ $5kg 42g = 5kg + 48 + \frac{42}{1000}g$ = 5kg + 0.042kg = 5.042m	1kg = 1000g $5kg 42g = 5 \times 1000g + 42g$ = 5000g + 42g = 5042g
(b)	$5.19kg = 5kg + 0.19kg$ $1kg = 1000g$ $5kg + 0.19kg = 5kg + 0.19 \times$ $1000g$ $= 5kg + 190g$ $= 5kg 190g$	5.19kg	5 kg 190g 1 kg = 1000g 5 kg 190g = 5 × 1000g + 190g = 5000g + 190g = 5190g
(c)	9kg 500g	9kg 500g $1g = \frac{1}{1000}$ kg 9kg 500g $= \frac{500}{1000}$ kg $= 0.500$ kg = 9kg $+ 0.500$ kg $= 9.500$ kg	1 kg = 1000g 9kg 500g = 9 × 1000g + 500g = 9000 + 500g = 9500g
(d)	8g 234mg	$1 mg = \frac{1}{1000} g$ 8g 234mg = 8g + $\frac{234}{1000} g$ = 8g + 0.234 = 8.234g	$1g = 1000mg8g 234mg = 8 \times 1000mg + 234mg= 8234mg$
(e)	6kg 100g	$1g = \frac{1}{1000} kg$ $6kg \ 110g = 6kg + \frac{110}{1000} kg$ = 6kg + 0.110kg = 6.110kg	1 kg = 1000g $6 kg \ 110g = 6 \times 1000g + 110g$ = 6000g + 110g = 6110g

Exercise 9.4

2. (a) 8.56kg into g 1 kg = 1000 g8.56kg = 8.56×1000 g = 8560(b) 0.325kg into g 1 kg = 1000 g0.325kg = 0.32×1000 g = 325g(c) 4.275kg = 4.275×1000 g = 4275g**3.** (a) 375g into kg $1g = \frac{1}{1000}kg$ $375g = \frac{375}{1000}kg$ = 0.375kg (b) 5264g into kg $1g = \frac{1}{1000}kg$ $5264g = \frac{5264}{1000}$ kg = 5.264kg (c) 9200g into kg $9200g = \frac{9200}{1000}$ kg = 9.200kg **4.** (a) 48kg to g 1 kg = 1000 g48kg = 48×1000 g = 48000 g(b) 25dag to dg 1 dag = 100 dg $25 dag = 25 \times 100 dg$ = 2500 dg(c) 64g to mg 1g = 1000mg $64g = 64 \times 1000mg$ = 64000mg (d) 72dg to mg 1 dg = 100 mg $72dg = 72 \times 100mg$ = 7200mg Mathematics-5 89

(e) 86dag to g 1 dag = 10 g $86 dag = 86 \times 10 g$ = 860g(f) 81g to mg 1g = 1000mg $81g = 81 \times 1000mg$ = 81000mg (g) 550g to kg $1g = \frac{1}{1000}kg$ $550g = \frac{550}{1000}kg$ = 0.550 kg(h) 4326dg to hg $1 dg = \frac{1}{1000} hg$ $4326dg = \frac{4326}{1000}kg$ = 4.326hg (i) 1204dg to kg $1 dg = \frac{1}{10000} kg$ = 1204kg $= \frac{1204}{10000}$ kg = 0.1204kg (j) 25mg to cg $1 \text{mg} = \frac{1}{10} \text{cg}$ $25mg = \frac{25}{10}cg$ = 2.5 cg(a) 5.324kg = 50kg + 0.324×1000 g 5. = 5kg + 324g(b) 2.004kg = 2kg + 0.004g 1 kg = 1000 g $2kg + 0.004kg = 2kg + 0.004 \times 1000g$ = 2kg + 4g(c) 0.650kg 1 kg = 100 g $0.650 \text{kg} = 0.650 \times 1000 \text{g}$ = 650g(d) 48.3kg 1 kg = 1000 g48.3kg = 48.3×1000 g = 48300 g

Answer Key

(e)
$$5.5 \text{kg}$$

 $1 \text{kg} = 1000 \text{g}$
 $5.5 \text{kg} = 5.5 \times 1000 \text{g}$
 $= 5500 \text{g}$
(f) $3260 \text{g} = 3000 \text{g} + 260 \text{g}$
 $= \frac{1}{1000} \text{kg}$
 $3000 \text{g} + 260 \text{g} = \frac{3000}{1000} \text{kg} + 260 \text{g}$
 $= 3 \text{kg} + 260 \text{g}$
 $= 3 \text{kg} - 260 \text{g}$
 $3 \text{kg} - 260 \text{g}$
 $3 \text{kg} - 260 \text{g}$
 $3 \text{kg} - 260 \text{kg}$
 $= 3.260 \text{kg}$
(g) $1999 \text{g} = 1000 \text{g} + 999 \text{g}$
 $1 \text{g} = \frac{1}{1000} \text{kg}$
 $1000 \text{g} + 999 \text{g} = \frac{1000}{1000} \text{kg} + 999 \text{g}$
 $= 1 \text{kg} + 999 \text{g}$
 $1 \text{kg} - 999 \text{g} = 1 \text{kg} + \frac{999}{1000} \text{kg}$
 $= 1 \text{kg} + 0.999 \text{kg}$
 $= 1.999 \text{kg}$

Exercise 9.5

(a)	kg			σ		1		
				g				
(1	(1	1				
	2	4	3	4	5			
	0	7	1	1	0			
+		2	0	4	5			
	3	3	5	0	0			
= 3	3kg	500)g			-		
1kg	; = .	$\frac{1}{1000}$	-kg	-				
33k	g 5	1000 00g	,	33kg	<u>y</u> +	5	$\frac{00}{100}$	g
						1()00	0
- 5	3Kg	· + ().50)()kg				
= 33).5()0kg				
= 33	3.50	0kg					<i>a</i>	
= 33	3.50 kg			lag			g	
= 33	3.50 kg	0kg		lag			g ①	
= 33	3.50 kg	0kg		lag) 5	C)	1	6
= 33	3.50 kg	0kg hg		lag) 5	C)	① 0	64
= 33 (b)	3.50 kg ① 4	0kg hg 8	(1 0	lag) 5 9)	① 0	
= 33	3.50 kg (1) 4 3 8	0kg hg 8 2	(1) 0 0 1	lag) 5 9 4)	① 0 0 1	4

.......

2.	(a)		50kg	5	ткg	+ 0	0.01		5		
			kg			g	5				
		1	0	9		3 7		9			
		_	5	5		3 1	[2			
			5	4		0 6	5	7			
		54g									
	-	54.0	067g	5							1
	(b)		kg	h	g	da			g		
								9			
					\mathcal{D}	10				13	
		1	2	1	}	Ø	5	ø	Q	X	
		_	7	7	7		7	<u> </u>	0	7	
			5	()	9	7	9	9	6	
						or					
					kg	hg	d	ag	g		
						\bigcirc		4	13		
				1	2	.8		5	3		
				-	7	7		7	7		
					5	0		7	6		
3.	(a) 1	6kg	5g								
	18	g =	$\frac{1}{1000}$	<u></u> kg							
	16		ig =			.005g .005g					
			1			3					
			1	6.	0	0	5				
	×					3	0				
			0	0	0	0	0				
	+	4		0		5					
		4	8	0	1	5	0	_			
	=	480	.150	[3	dec	imal	po	ints]		

Answer Key

90

(b) 42kg 395g by 10 $1g = \frac{1}{1000}kg$ $42\text{kg } 395\text{g} = 42\text{kg} + \frac{395}{1000}\text{kg}$ = 42kg + 0.395kg = 42.395kg $42.395 \times 10 = 423.95$ [When we multiply a decimal number by 10, the decimal points shifts to the right by one place] (c) 8 kg 9 hg 6 dg 5 g by 24 1 hg = $\frac{1}{10}$ kg 9 hg = $\frac{9}{10}$ kg = 0.9kg 6 dag = $\frac{1}{100}$ kg $=\frac{6}{100}$ kg = 0.06kg $1g = \frac{1}{1000}$ kg, $5g = \frac{5}{1000}$ kg = 0.005kg $= (8 \text{kg} + 0.9 \text{kg} + 0.06 \text{kg} + 0.005 \text{kg}) \times 24$ = 215.16kg (a) 5109g ÷ 3 4. 1703 3) 5109 – 3 🖌 21 - 21 009 - 9 0 = 1703 g(b) 350kg by 20 $\frac{1000^{kg}}{350 kg 50 g} = 350 kg + \frac{50}{1000} kg 20)350.050$ = 350 kg + 0.0501 = 350 kg + 0.050 kg150 = 350.050kg - 140♥ = 17.525kg 100 - 100**↓** 050 - 40, 100 - 100 0

(c) 19cg 5mg by 5 3.9 $1 \text{cg} = \frac{1}{10} \text{mg}$ 19.5 $19cg \ 5mg = 19cg + \frac{5}{10}cg$ 15 = 1.9cg + 0.5cg 45 = 19.5cg - 45 19.5cg ÷ 5 = 3.9cg 0 (d) 65kg 703g by 9 $1kg = \frac{1}{1000}g$ $65\text{kg } 703\text{g} = 65\text{kg} + \frac{703}{1000}\text{kg}$ $= (65 \text{kg} + 0.703 \text{kg}) \div 9$ $= 65.703 \text{kg} \div 9 = 7 \text{kg} 300 \text{g}$ (a) Weight of 1 pencil box: 275g Weigth of 28 pencil boxes in kg = $275g \times 28$ = 7900g (1)(1)(6)(4)2 7 5 $\frac{+5550}{7700} \times$ $1g = \frac{1}{1000}kg$ $7700g = \frac{7700}{1000}kg$ = 7.770 kgAnswer: Weight of 28 pencil boxes in kg is 7.900kg (b) Weight of Apples: 3kg 450g kg g Weight of Mangoes: 2kg 500g (1) (1)(1) Weigth of Grapes: 1kg 3 5 0 4 125g 2 5 0 0 Total weight: Weigth 1 5 1 2 +of Apples + Weigth of 7 0 7 5 Mangoes + Weight of Grapes = 3 kg 450 g + 2 kg 500 g + 1 kg 125 g= 7 kg 75 gAnswer: Weight of fruits bought by Sunaina is 7kg 75g

5.

91

Answer Key 91

(c) Number of balls in box: 36	155
Weight of box: 5580g	36) 5580
Weight of one ball in $kg =$ Weigth of box \div Number of balls	- 36
$= 5580g \div 36$	198
= 155g	<u>- 180 ↓</u> 180
$1g = \frac{1}{1000}kg$	-180
$15g = \frac{155}{1000}kg = 0.155kg$	0
Answer: Weight of 1 ball is 0.155kg.	

Exercise 9.6

1.			
	Capactity in full from	Capacity in bigger units	Capacity in smalller units
(a)	730c/ 5m/	$1ml = \frac{1}{10}cl$ $730cl 5ml = 730cl + \frac{5}{10}cl$ $= 730cl + 0.5cl$ $= 730.5cl$	$1cl = 10ml 730cl 5ml 730 \times 10ml + 5ml = 7300ml + 5ml = 7305ml$
(b)	$8.908l = 8l + 0.908l$ $1l = 1000ml$ $8l + 0.908l = 8l + 0.908 \times 1000ml$ $= 8l + 908ml = 8l 908ml$	8.908/	$8l 908ml$ $1l = 1000ml$ $8l 908ml = 8 \times 1000ml + 908ml$ $= 8000ml + 908ml = 8908ml$
(c)	7 <i>l</i> 305m <i>l</i>	$1ml = \frac{1}{1000}l$ 7l 305ml = 7l + $\frac{305}{1000}$ = 7l + 0.305l = 7.305l	7305m <i>l</i>
(d)	12/ 28ml	$1ml = \frac{1}{1000}l$ $12l 28ml = 12l + \frac{28}{1000}l$ = 12l + 0.028l = 12.028l	1l = 1000ml $12l 28ml = 12 \times 1000ml + 28ml$ = 12000ml + 28ml = 12028ml
(e)	$24.408l = 24l + 0.408l$ $1ml = 1000ml$ $24l + 0.408l = 24l + 0.408 \times 1000ml$ $= 24l + 408ml$ $= 24l + 408ml$	24.408/	1l = 1000ml 24l 408ml = 24 × 1000ml + 408ml = 24000ml + 408ml = 24408ml

Answer Key

6

92

2. (a) 430.5c*l* into m*l*

1cl = 10ml $430.5cl = 430.5 \times 10ml$ = 4305ml

(b) 19.36dl into ml 1l = 100ml $19.3dl = 19.36 \times 100ml$ = 1936ml(c) 6.105l into ml 1l = 1000 ml $6.105l = 6.105 \times 1000ml$ = 6105m*l* **2.** (a) 1cl = 10ml $430.5cl = (430.50 \times 10)ml$ = 4305(b) 1dl = 100ml $19.36dl = (19.36 \times 100)ml$ = 1936m*l* (c) 1l = 1000ml $6.105 \text{m}l = (6.105 \times 1000)l$ = 6105*l* **3.** (a) $1 \text{ml} = \frac{1}{1000} l$ 5648ml = $\frac{5648}{1000}$ = 5.6480l(b) 18.46hl into l 1hl = 100ml $18.46 \times 100 ml$ = 1846m*l* (c) 9.246kl into l 1kl = 1000l $9.246kl = 9.246 \times 1000l$ = 9246l4 (a) 1340cl into dal $1cl = \frac{1}{1000}dal$ $1340cl = \frac{1340}{1000} dal$ = 1.340dal

(b) 6000*l* to k*l* $1l = \frac{1}{1000} kl$ $6000l = \frac{6000}{1000} kl = 6kl$ (c) 55cl to l $1cl = \frac{1}{100000}$ $55cl = \frac{55}{100000}$ = 000.55l(d) 93dal to kl $1 \operatorname{da} l = \frac{1}{10} \operatorname{k} l$ $93 \operatorname{da} l = \frac{93}{10}$ = 0.93 kl(e) 140dl into l $1dl = \frac{1}{10}l$ $140dl = \frac{140}{10}l$ = 14l(f) 26 da l to m l1 da l = 10000 m l $26 da l = 26 \times 10000 ml$ = 260000 ml5. (a) 2.450l = 2l + 0.450l1l = 1000 ml $2l + 0.450l = 2l + 0.450 \times 1000ml$ = 2l + 450ml= 2l 450ml(b) 3.765l + 3l + 0.765l1l = 1000 ml $3l + 0.765l = 0.765 \times 1000$ ml = 3l + 765ml= 3l 765ml(c) 68.3*l* 1l = 1000 ml $68.3l = 68.3 \times 1000 \text{ml}$ = 68300m*l* (d) 1465ml $1\mathrm{m}l = \frac{\mathrm{I}}{1000}l$ $1465 \text{m}l = \frac{1465}{1000}l$ = 1.465*l*

Mathematics-5

93

Answer Key 93

(e)
$$1l = 1000ml$$

 $38l = 38 \times 1000ml$
 $= 38000ml$
(f) $2005ml$
 $1ml = \frac{1}{1000}l$
 $2005ml = \frac{2005}{1000}l$
 $= 2.005l$
(g) $3\frac{1}{2}l = \frac{2 \times 3 + 1}{2}l$
 $= \frac{6+1}{2}l = \frac{7}{2}l$
 $= 3.5l$
 $1l = 1000ml$
 $3.5l = 3.5 \times 1000ml$
 $= 3500ml$
(h) $9\frac{1}{4}l = \frac{4 \times 9 + 1}{4} = \frac{36 + 1}{4}l = \frac{37}{4}l = 9.25l$
 $1l = 1000ml$
 $9.25l = 9.25 \times 1000ml$
 $= 9250ml$
Exercise 9.7

Mathematics-5

94

•••••

$$= 7kl + 0.1kl + 0.01kl + 0.010kl$$

$$= 7.210kl$$
2. (a) $1ml = \frac{1}{1000}l$
 $4l \ 655ml = \frac{4l + 635}{1000} ml$
 $= 4l + 0.655l$
 $= 4.655l$
 $= 41 \ 655ml$
(b)

$$\boxed{l \ ml}$$

$$\boxed{l \ ml}$$

$$\boxed{g \ 4 \ 5 \ 5}$$

$$= 4.655ml$$
(b)

$$\boxed{l \ ml}$$

$$\boxed{g \ 4 \ 6 \ 5 \ 5}$$
(c)

$$\boxed{l \ ml}$$

$$\boxed{g \ 4 \ 6 \ 5 \ 5}$$
(c)

$$\boxed{l \ ml}$$

$$\boxed{g \ 4 \ 6 \ 5 \ 5}$$
(c)

$$\boxed{l \ ml}$$

$$\boxed{g \ 4 \ 6 \ 5 \ 5}$$
(c)

$$\boxed{l \ ml}$$

$$\boxed{g \ 4 \ 6 \ 5 \ 5}$$
(c)

$$\boxed{l \ ml}$$

$$\boxed{g \ 4 \ 6 \ 5 \ 5}$$
(c)

$$\boxed{l \ ml}$$

$$\boxed{g \ 4 \ 6 \ 5 \ 5}$$
(c)

$$\boxed{l \ ml}$$

$$\boxed{l \ ml}$$

$$\boxed{g \ 4 \ 6 \ 5 \ 5}$$
(c)

$$\boxed{l \ ml}$$

$$\boxed{l \ ml}$$

$$\boxed{g \ 4 \ 6 \ 5 \ 5}$$
(c)

$$\boxed{l \ ml}$$

$$\boxed{l \ ml}$$

$$\boxed{l \ ml}$$

$$\boxed{g \ 9 \ 9 \ 9}$$
(c)

$$\boxed{l \ 1 \ 1000}l$$
(c)

$$\boxed{kl \ ml}$$

$$\boxed{l \ 1 \ 1000}l$$
(c)

$$\boxed{kl \ ml}$$

$$\boxed{l \ 1 \ 1000}l$$
(c)

$$\boxed{kl \ ml}$$

$$\boxed{l \ 9 \ 9 \ 9 \ 9}$$
(c)

$$\boxed{l \ 1 \ 100}kl$$
(c)

$$\boxed{l \ 10 \ 10 \ 10}l$$
(c)

$$\boxed{l \ 10 \ 10 \ 10}l$$
(c)

$$\boxed{kl \ 9 \ 9 \ 9 \ 9}l$$
(c)

$$\boxed{lkl \ 97dl \ 998l}l$$
(c)

$$\boxed{lkl \ 97dl \ 998l}l$$
(c)

$$\boxed{lkl \ 998l} \ \frac{998}{1000}kl$$
(c)

$$\boxed{lkl \ 998l}l \ \frac{998}{1000}kl$$
(c)

$$\boxed{l \ 6 \ 1kl \ 0.6 \ 0.97kl}l \ 0.998kl$$
(c)

$$= 61kl \ 0.6 \ 0.97kl \ 0.998kl$$
(c)

$$= 61kl \ 0.6 \ 0.97kl \ 0.998kl$$
(c)

$$\boxed{l \ 10 \ 10}l$$

Answer Key

94

	01	•				
		k <i>l</i>	h <i>l</i>	da <i>l</i>	1	
				B		
			8	3	J2	
		7 1	8 9 2	4	12 2 4	
	_	$\begin{array}{c} 1 \\ 0 \\ \hline 6 \\ 1 \end{array}$	2	6	4	
		6 1	6	7	8	
	1h <i>l</i> =	$=\frac{1}{10}k$	l			
	6h <i>l</i> =	$\frac{6}{10}$ k	l = 0	6k <i>l</i>		
	1 <i>l</i> = -	$\frac{1}{1000}$ k	l			
	8 <i>l</i> = -	$\frac{8}{1000}$ k	l = 0	.008k <i>l</i>		
	1da <i>l</i> =	$=\frac{1}{100}$	-kl			
	7da <i>l</i> :	$=\frac{7}{100}$	-k <i>l</i>			
	= 0.0	7k <i>l</i>	,			
3.	(a) 5	<i>l</i> 3751	n <i>l</i> by	38		
		$nl = -\frac{1}{2}$	1000			
	51	375m	l = 5	$l + \frac{37}{10}$	$\frac{5}{00}$ ml	
	=	5l + 0).3751	l = 5.3	75 <i>l</i>	
			1)		
			3) (6) (4)	1	
			5	. 3	7 5	
	×				8 8	_
		1				
				0 (
	+	1 (6 1	2 5	5 ×	
		2 (0 4	2 5	5 0	_
			_	3-decin	nal p	oint]
		<i>l</i> 4091				
		$nl = -\frac{1}{2}$	1000			
				$l + \frac{40}{10}$	$\frac{19}{00}$ ml	
		6l + 0				
	=	6.409				

= 4l + 0.232l

= 4.232*l*

Mathematics-5 95

•••••

Answer Key 95

....

0.529
8) 4.232
$-40\downarrow$
23
$-16 \checkmark$
72
0
= 0.26 <i>l</i>
(c) $26l \ 480ml \div 16$
$1\mathrm{m}l = \frac{1}{1000}l$
$26l \ 480ml = 26l + \frac{480}{1000}l$
1,655
1.655 16)26.480
-16
104
<u>- 96 V</u>
88
<u> </u>
80
0
= 26l + 0.480l
= 26.480
= 1.530
(d) $102l \ 208ml \div 32$
$1ml = \frac{1}{1000}l$
$\frac{1111}{1000^{l}} = \frac{208}{208}$
$102l \ 208ml = 102l + \frac{208}{1000}l$
= 102 + 0.208l = 102.208l
3.194
32)102.208
- 96 🖌
62
-32 V
$\frac{32}{300}$
- 288 V
128
- 128
$\frac{-128}{0}$
= 3.194/

^{= 3.194}*l*

5. (a) Capacity of one bucket: $18l \ 350ml$ Capacity of second bucket: $16l \ 755ml$ Total water in both the bucket: Capacity of one bucket + Capacity of second bucket = $18l \ 350ml + 16l \ 755ml$ = $35l \ 105ml$ $1ml = \frac{1}{1000}l$ $35l \ 105ml = 35l + \frac{105}{1000}l$ = $35l \ 0.105l$

	l			m <i>l</i>	
	1	1	1		
	1	8	3	5	0
+	1	6	7	5	5
	3	5	1	0	5

= 35.105*l*

Answer: Total water in both the bucket is 35.105*l*

(b) Quantity of 1 bottle: 2.25ml

Quantity of 75 such bottles: Quantity of 1 bottle \times 75

			1	3	
			1	2	
			2 .	2	5
×				7	5
		1	1	2	5
+	1	5	7	5	×
	1	6	8	7	5

 $= 2.25 \mathrm{ml} \times 75$

= 168.75 [2 decimal places] Answer: Quantity of 25

- such bottles is ₹2.25m*l*
- (c) Number of glasess: 25
 Quantity of glasess: 8*l* 205m*l*Quantity of 1 glass: Quantity of glasses ÷
 Number of glasses

$$= 8l 205 \text{ml} \div 25$$

 $1ml = \frac{1}{1000}l$ 81 205ml = 8l + $\frac{205}{1000}l$ = 8l + 0.205l = 8.205l

 $8.205l \div 25 = 0.328l$

Answer Key

96

	0.3282
23	5) 8.205
-	- 75 🖌
	70
	- 50♥
	205
	- 200
	50
	- 50
_	0

Quantity of 5 glasses: Quantity of 1 glass \times 5 = 0.3282*l* \times 5

= 1.641l [4 decimal places]

	1	1	4	1	
	0.	3	2	8	2
×					5
	1	6	4	1	0

Answer: Quantity of 5 such glasses is 1.641l

Learning Updates

 (a) 3.5km into m 1km = 1000m 3.5km = 3.5 × 1000m = 3500m (b) 9.2km into m 1km = 1000m 9.2km = 9.2 × 1000m = 9200m

> (c) 0.45m into cm 1m = 100cm 0.45m = 0.45 × 100cm

(d) 520m into km $1m = \frac{1}{1000}$ km

$$520m = \frac{520}{1000} km$$

= 0.52km

(e) 450m into km $1m = \frac{1}{1000} km$ $450m = \frac{450}{1000}km$ = 0.450 km(f) 4km 800m into m 1km = 1000m 4km 800m = $4 \times 1000 + 800$ m = 4000m + 800m = 4800m(g)1m = 10dm $4m 9dm = 4 \times 10dm + 9dm$ = 40 dm + 9 dm = 49 dm(a) 0.04kg into g 1 kg = 1000 g0.04kg = 0.04×1000 g = 40g(b) $0.50 \text{kg} = 0.50 \times 1000 \text{g}$ = 500g(c) 2.15kg into g 1kg = 1000g 2.15kg = 2.15×1000 g = 2150g (d) 4400g into kg $1g = \frac{1}{1000}kg$ $4400g = \frac{4400}{1000}kg$ = 4.4kg (e) 850g into kg $1g = \frac{1}{1000}kg$ $850g = \frac{850}{1000}kg$ = 0.850kg (f) 5kg 360g into g 1 kg = 1000 g $5 \text{kg} \ 360 \text{g} = 5 \times 1000 \text{g} + 360 \text{g}$ = 5000g + 360g= 5360g (g) 7g 95mg into mg 1g = 1000mg $7g 95mg = 7 \times 1000mg + 95mg$

2.

= 7000 mg + 95 mg

Answer Key

97

= 7095mg

(a) 0.8*l* into m*l* 3. 1l = 1000 ml $0.8l = 0.8 \times 1000$ ml $0.8l = 0.8 \times 1000$ ml = 800m*l* (b) 2.17*l* into m*l* 1l = 1000 ml $2.17l = 2.17 \times 1000$ ml = 2170 ml(c) 2740ml into l $1ml = \frac{1}{1000}$ 2740ml =1000 = 2.740l(d) 5.45l into ml 1l = 1000 ml $5.45l - 5.45 \times 1000ml$ = 5450 ml(e) 950ml into l1ml =950 950ml = $\overline{1000}^{l}$ = 0.950l(f) 3l 155ml into ml 1l = 1000 ml $3l \ 155ml = 3 \times 1000ml + 155ml$ 3000 + 155ml= 3155ml (g) 3kl 60l into l1kl = 1000l $3kl \ 60l = 3 \times 1000l + 60l$ = 3000l + 60l= 3060l

4. (a) Capacity of one backet: 15kg 250g
Capacity of second backed: 8kg 750g
Capacity of both the basket: Capacity of first basket + Capacity of second basket

kg g (1) (1)1 1 5 2 5 0 7 5 8 0 0 +2 4 0 0 0

$$= 15 \text{kg} \ 250 \text{g} + 8 \text{kg} \ 750 \text{g}$$

$$= 24$$
kg

Answer: Both the baskets can hod 24kg of grains.

(b) Quantity of 1 bottle: 550ml

Quantity of 30 such bottles: Quantity of 1 bottle \times 30

			1		
			5	5	0
×				3	0
			0	0	0
+	1	6	5	0	\times
	1	6	5	0	0
= 5	5601	nl >	× 3()	
= 1	650)0m	n <i>l</i>		

Answer: Quantity of 30 such bottles is 16500ml.

Multiple Choice Question

- 1. (a) Milimetre
- 2. (c) Killolitre
- 3. (a) Divide
- 4. (b) Multiply

Skills Check

1. (a) 1 litre = 1000ml $1000ml \div 200ml = 5$

Answer: five 200ml measure of water can fill an 1 litre can.

Mathematics-5

(b) 1l = 1000ml $4l = 4 \times 1000$ ml = 4000 ml $4000 \text{ml} \div 200 \text{m}l = 20$ Answer: 20, 200ml measure of water can fill a 4 litre drum. **2.** Capacity of tank A = 5 times capacity of tank B Let Capacity of tank B be x Capacity of tank A = 5xWater in both tank A and Tank B = x + 5x= 6x If both of them will contain 45l of water each, then total water = 90lx + 5x = 906x = 90 $x = \frac{90}{6}$ x = 15Water in tank B = x = 15 litres Water in tank $A = 5 \times 15$ Litres = 75So, Quantity of water to be transferred from tank

A to tank B so that each tank contains 45 litres = 751 - 45l

= 30 litres

Answer: 30 litres of water should be transferred

3. Length of red portion: 1.8m Length of white portion: 3 times red portion $= 3 \times 1.8 \text{m}$ = 5.4m Total length: Length of red portion + Length of white portion = 1.8m + 5.4m= 7.2mAnswer: The pole is 7.2m long

> Answer Key 99

Perimeter and Area

Get Started

- Length of society: 100m
- Breadth of society: 80m
- Distance Rohit cover = Perimeter of rectangle

= 2 (Length + Breadth) = 2(100 + 80)

= 2(180) = 360m

Number of days in a weet: 7

- Distance Covered in a week: Distance covered in 1 day \times 7
- $= 360 \mathrm{m} \times 7$
- = 2520m

Exercise 10.1

- (a) Perimeter of the object = Perimeter of retangle oppssite sides are equal
 - = 2(Length + Breadth)
 - = 2(8 + 12)
 - $= 2 \times 20$ cm
 - = 40 cm
 - (b) Perimeter of object = Perimeter of square (All four sides are equal)
 - $= 4 \times \text{Side} = 4 \times 80 \text{cm}$
 - = 320 cm
 - (c) Perimeter of figure = Perimeter of rectangle= 2(Length + Breadth) [Opposties sides
 - are equal]
 - = 2(136 cm + 164 cm)
 - = 2(300 cm) cm
 - = 600 cm
 - (d) Perimeter of figure = Perimeter of triangle
 - = Sum of all three sides
 - = 10 cm + 10 cm + 12 cm
 - = 32cm
 - (e) Perimeter of figure = Perimeter of rectangle
 - = 2(Length + Breadth) (Opposite side are equal)

100 Mathematics-5

- = 2(80 cm + 164 cm) = 2(244 cm)
- = 488cm
- (f) Perimeter of figure = Perimeter of square= 4 × side
 - $= 4 \times 30$ cm
 - = 120 cm
- **2.** (a)

		Rectangle	
	Length	Breadth	Perimeter [2 (Length + Breadth)]
(i)	8cm	6cm	= [8cm + 6cm] = 2[14cm] = 28cm
(11)	9cm	8cm	2[9cm + 8cm] = 2[17cm] = 34cm
(111)	7cm	Perimeter = 2(Length + Breadth)	24
		24 = 2(7 + Breadth)	
		$24 \div 2 = 7 + Breadth$	
		B = 12 - 7 = 5	
		5cm	
(iv)	Perimeter = 2(Length + Breadth)	12cm	60cm
	60cm = 2(Length + 12)		
	$60 \text{cm} \div 2 = \text{Length} + 12 \text{cm}$		
	20cm = Length + 12cm = 30 - 12 =		
	Length = 18cm		

, ,	Length	Breadth	Perimeter [2 (Length + Breadth)]
(v)	$9\frac{1}{2} \text{cm}$ $9\frac{1}{2} \text{cm}$ $9\frac{1}{2} \text{cm} = \frac{2 \times 9\text{cm} + 1\text{cm}}{2}$ 10 m	$5\frac{1}{2} \text{ cm} = \frac{5\frac{1}{2} \text{ cm}}{2}$ $\frac{5\frac{1}{2} \text{ cm} = \frac{2 \times 5\text{ cm} + 1\text{ cm}}{2}}{\frac{10\text{ cm} + 1\text{ cm}}{2} = \frac{11}{2}\text{ cm}}$ $= 5.5\text{ cm}$	Perimeter = 2(Length + Breadth) = 2 (9.5cm + 5.5cm) = (15cm) = 30cm
	$\frac{\frac{18 \text{ cm} + 1 \text{ cm}}{2}}{= 9.5 \text{ cm}} = \frac{19}{2} \text{ cm}$	= 5.5cm	
(vi)	5.5cm	Perimeter 2[Length +	21cm
		Breadth]	
		21 cm = 2[5.5 cm + Breadth]	
		$\frac{21}{2}$ cm ÷ 5.5 cm + Breadth	
		10.5 cm = 5.5 cm + Breadth	
		Breadth = 10.5 - 5.5 cm	
		Breadth = 5cm	

(b) Square [Perimeter = 4 × side]Side = Perimeter ÷ 4

	Square	
	Side	Perimeter
(i)	8cm	4×8 cm = 32cm
(ii)	$40 \div 4 = 10 \text{cm}$	40cm
(iii)	$7\frac{1}{2} = \frac{2 \times 7 + 1}{2} = \frac{14 + 1}{2} = \frac{15}{2} = \frac{15}{7.5 \text{ cm}}$	4 × 7.5cm = 30.0cm
(iv)	$90m \div 4 = 22.5$	90m
(v)	12.5cm	4 × 12.5cm = 50cm
(vi)	$20m \div 4 = 5m$	20m

- 3. Perimeter of triangle: Sum of all three sides
 - (a) Perimeter: 8cm + 7cm + 4cm
 - Perimeter: 19cm
 - (b) Perimeter: 7.5cm + 6.3cm + 5.1cm = 18.9cm
 - (c) Perimter: 4.9cm + 5.2cm + 8.1cmPerimeter: 4.9cm + 5.2cm + 8.1cmPerimeter: 18.2cm
 - (d) Perimter: 6cm + 7.2cm + 8.5cm = 21.7cm
- 4. Length of room: 10m
 Breadth of room: 8.2m
 Perimeter of room: 2(length + Breadth)
 = 2(10m + 8.2m)
 - 2(18.2)m
 - = 36.4m
- 5. Perimeter of rectangular plot: 2(Length + Breadth)
 - = 2(80m + 60m) = 2(140m) = 280m

Perimeter of Square plot: $4 \times sides$

 $= 4 \times 100m = 400m$

400m > 280m

Answer Key 101

Perimeter of square > Perimeter of rectangle (3) Difference between perimeter of square and 4 0 8 Perimeter of rectangle: 400m - 280m 4 = 120m1 6 3 2 Answer: Perimter of square plot is more than Answer: Ravi covered a distance of 1632m. perimeter of rectangular plot by 120m. Total length of fence around a square field = 6. Length of rectangular plot: 85m 8. Perimeter of square field Breadth of rectangular plot: 60m $308 = 4 \times \text{Side}$ Perimeter of rectangular plot: 2(Length + Side = $\frac{308}{4}$ Breadth) Side = 77m [All sides of square are equal] = 2(85m + 60m) = 2(145)m77 = 290 m4)308 Cost of Constructing 1m of wall: ₹125 - 28 Cost of constructing 290m of wall: 290m \times 28 ₹125 - 28 = ₹36250 0 Answer: Length of each square field is 77m (1)9. Side 1 = Side 2[isoscles triangles](2)(4)side 1 = 5.9m, Side 3 = 7.6cm 1 2 5 Side 2 = 5.9m 2 9 0 Perimeter of isoscles triangles: Sum of length 0 0 0 of all three sides = 5.9m + 5.9m + 7.6m1 1 2 5 \times = 11.8m + 7.6m = 19.4m $+ 2 5 0 \times \times$ Answer: Perimeter of isoscles triangle is 3 6 2 5 0 19.4m 10 Side: 8.9cm [All sides of an equilaterial Answer: Total cost of constructing wall is traingle are equal] ₹36250. Perimeter of equilteral traingle = Sum of all 7. Length of side of square field: 102m three sides Number of rounds Ravi ran: 4 = 8.9 cm + 8.9 cm + 8.9 cmPerimeter of square field = $4 \times \text{side}$ Answer: Perimeter of equailateral triangle is $= 4 \times side$ 26.7m $= 4 \times 102m = 408m$ 1 0 2 4 4 0 8 Total distance Ravi ran: Perimeter of square field × Number round Ravi ran $= 4 \times 408 \mathrm{m}$ = 1632mMathematics-5 102

Exercise 10.2

- (a) Rectangle is covered with 3 squares each measuring 1 sq.cm hence its area is 3 sq cm.
 - (b) Rectangle is covered with 6 squares each measuring 1 sq.cm hence its area is 6sq cm.
 - (c) Square is covered with 9 squares each measuring 1 sq.cm hence its area is 9sq cm.
 - (d) Rectangle is covered with 15 squares each measuring 1 sq.cm hence its area is 15sq cm.
- (a) Area of figure = Area of square [All Sides are equal]

Side \times Side = 2.5cm \times 2.5cm

		1	
		2	
		2 .	5
X		2.	5
	1	2	5
+	5	0	×
	6.	2	5

[2 decimal places]

 $= 6.25 \text{cm}^2$

(b) Area of figure = Area of rectangle [Opposite are equal]

			1	2	
			1	2	
			1	2	4
×			1	5	5
		1	6	2	0
		6	2	0	×
+	1	2	4	×	×
	1	9	2	2	0

- = Length \times Breath = 124cm \times 155cm
- $= 19220 \text{cm}^2$

- (c) Area of figure = Area of square
 - = Side \times Side
 - = 18cm $\times 18$ cm
 - $= 324 \text{cm}^2$

	1	6	
		1	8
×		1	8
	1		
	1	4	4
+	1	8	×
	3	2	4

(d) Area of figure = Area of rectangle

= Length \times Breath

- $= 90 \text{cm} \times 105 \text{cm}$
- $= 9450 \text{cm}^2$

			4	
		1	0	5
×			9	0
		0	0	0
+	9	4	5	×
	9	4	5	0

(e) Area of figure = Area of square= Side × Side

 $= 1024 \text{cm}^2$

Answer Key 103

(f) Area of figure = Area of rectangle = Length \times Breadth 6 0 $+ 2 4 0 \times$ 7 0 0 $= 60 \text{cm} \times 45 \text{cm}$ $= 2700 \text{cm}^2$ **3.** (a) Area of rectangle: Length \times Breadth $= 20 \text{cm} \times 12 \text{cm} = 240 \text{cm}^2$ (b) Area of rectangle: Length \times Breadth = 11.5 cm $\times 10$ cm = 115 cm (c) Area of rectangle: Length \times Breadth $= 1m \ 32cm \times 80cm \ [1cm = \frac{1}{100}]$ $[1m \ 32cm = 1m + \frac{32}{100}m = 1m + 0.32m =$ 1.32m] $= 1.32m \times 80m$ $= 105.6m^2$ 4. (a) Area of square: Side \times Side = 3.5cm $\times 3.5$ cm $= 12.25 \text{cm}^2$ (1)(2) 3.5 3.5 (2) 1 7 5 \times $+ 1 0 5 \times$ 1 2 . 2 5 [2-decimal places] (b)Area of square: Side \times Side $= 40 \text{cm} \times 40 \text{cm}$ $= 1600 \text{cm}^2$ (c) $8\frac{1}{2} = \frac{2 \times 8 + 1}{2} = \frac{16 + 1}{2} = \frac{17}{2} = 8.5 \text{m}^2$ Area of square: Side × Side $= 8.5 \text{m} \times 8.5 \text{m}$ $= 72.25 \text{m}^2$

5. Area of rectangular plot: 2550sq.m Length = 75m Area of rectangulr plot = Length × Breadth 2550m² = 75m × Breadth Breadth = $\frac{2550}{75}$ = 34m 75)2550 $-225\sqrt{}$ 300 $\frac{-300}{0}$

Answer: Breadth of rectangular plot is 34m.

6. Length of room: 650cm
Breadth of room: 450cm
Area of room = Length × Breadth
= 650cm × 450cm
= 292500cm²

				2		
				2		
				6	5	0
×				4	5	0
- 1						
				0	0	0
		3	2	0 5	0 0	0 ×
+	2	3 6	2 0	-	-	•

Cost of flooring at the rate of sq cm: 30 paise Cost of flooring at the rate of 292500sqcm: 292500×30 paise= 8775000 paise

1 paise = $\mathbf{\xi} \frac{\mathbf{I}}{100}$

104 Mathematics-5

8775000 paise = ₹
$$\frac{775000}{100}$$

= ₹87750

Answer: Cost of flooring is ₹87750

7.

		Rectangle	
	Length (cm)	Breadth (cm)	Area (sq.cm)
(i)	8.5	Area = Length × Breadth $51 \text{ cm}^2 = 8.5 \times 8$ Breadth = $\frac{51 \text{ cm}^2}{8.5 \text{ cm}}$ Beadth = 6cm	51cm ²
(ii)	Area = Length × Breadth 345cm^2 = Length × 15cm Length = $\frac{345 \text{cm}^2}{15 \text{cm}}$ Length = 23cm	15	345cm ²
(iii)	9cm	4.5cm	Area = Length × Breadth = $9 \text{cm} \times 4.5 \text{cm}$ = 40.5cm^2
(iv)	Area = Length × Breadth 1600cm = Length × 32cm Length = $\frac{1600 \text{ cm}^2}{32 \text{ cm}}$ Length = 50cm	32	1600cm ²
(v)	Area = Length × Breadth 112cm^2 = Length × 4cm Length = $\frac{112 \text{cm}^2}{4 \text{cm}}$ Length = 28cm	4	112cm ²
(vi)	11	Area = Length × Breadth $187 \text{cm}^2 = 11 \text{cm} \times \text{Breadth}$ $\frac{187 \text{cm}^2}{11 \text{cm}}$ Breadth = 17 cm	187cm ²

Answer Key

105

(b)

8.

	Square [Area = Side × Side]						
	Side (cm)			Area (sq.cm)			
(i)	6cm		36cm ²				
(ii)	3.5cm			$3.5 \text{cm} \times 3.5 \text{cm} = 12.25 \text{cm}^2$			
(iii)	$4\frac{1}{2}\text{cm} = \frac{2 \times 4 + 1}{4} = \frac{8 + 1}{4} = \frac{9}{2}\text{cm}$ $= 4.5\text{cm}$	cm	$4.5 \text{cm} \times 4.5 \text{cm} = 20.25 \text{cm}^2$				
(iv)	$2\frac{1}{4} \text{cm} = \frac{4 \times 2 + 1}{4} = \frac{8 + 1}{4} = \frac{9}{4} \text{cm}$	cm		2.25cm × 2.25 cm = 5.0625 cm ²			
(v)	11cm			$11 \text{cm} \times 11 \text{cm} = 121 \text{cm}^2$			
(vi)	13cm			$13 \text{cm} \times 13 \text{cm} = 169 \text{cm}^2$			
	of block = Area of rectangle ngth × Breath = 25cm × 12cm hcm ²	× + 2 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				

Area of path = Area of rectangle

- = Length \times Breadth = 12.5m \times 4.8m
- $= (1250 \text{cm} \times 480 \text{cm})$

(1m = 100cm)

			1	2		
			2	4		
			1	2	5	0
×				4	8	0
			0	0	0	0
	1	0	0	0	0	×
+	5	0	0	0	×	×
	6	0	0	0	0	0

Number of block required to the path $\frac{\text{Area of path}}{\text{Area of block}} = \frac{600000}{300}$ = 2000

Answer: 2000 blocks are required to lay the path.

9. Area of room = Area of rectangle

= Length × Breath = $4.50 \times 6m$ = $27m^2$ Cost of painting per sq.m = ₹10 Cost of painting $27m = ₹(10 \times 27)$ = ₹270

Hence cost of painting the walls is $\gtrless 270$.

- 10. Perimeter of rectangle = 2(Length + Breadth)
 - 88m = 2[24m + Breadth]2 4 88m = 48m + Breadth0 2 Breadth = 88 - 48m0 2 Breadth = 40m8 \times Breadth = 20m8 0 4 Area = Length \times Breadth $= 24m \times 20m$ $= 480 m^2$

Answer: Area of rectangle is 480m².

11. Perimeter of squure = $4 \times \text{Side}$

 $120m = 4 \times \text{Side}$ Side = $\frac{120}{4}$ m Side = 30m Area = Side × Side = 30m × 30m = 900m²

Answer: Area of square is 900m².

Exercise 10.3

1. (a) Area of rectangle = Number of squares measuring 1 sq unit each.

= 6sq Units

Area of triangle is half the area of reactangle as the diagonal divides the rectangle in two equal halves.

$$_{3}\mathscr{K} \times \frac{1}{\mathscr{Z}_{1}} = 3$$
 sq units

(b)Area of rectangle = 12 sq units

Area of rectangle = ${}_{6}\mathcal{V} \times \frac{1}{\mathcal{Z}_{1}} = 6$ sq.units

- (c) Area of square = Number of squares measuring 1 sq units each.
 - $= 9 \text{cm}^2$

Area of triangle is half the area of square as the diagonal divides the square in two equal halves = $9 \times \frac{1}{2} = 4.5 \text{cm}^2$

(d) Area of rectangle = Number of squares measuring 1 sq unit each = 20 sq.unitsArea of triangle is half the area of square as the diagonal divides the square in two equal halves.

$$= 20 \times \frac{1}{2} = 10 \text{cm}^2$$

2. Area of figure = Number of square measuring 1sq.unit each

Area (in sq.units)	15	7.5	18	9	6
Shape	E or C	F	D	А	В

- 3. Area of triangle = Number of blocks covered
 - (a) 6 units (b) 9 units
 - (c) 9 units (d) 17 units
 - (e) 9 units (f) 14 units
 - (g) 9 units

Exercise 10.4

To be done by studends

Learning Updates

- 1. Perimeter of trinagle: Sum of all the sides
 - (a) Perimeter of trinagle: 9cm + 7cm + 8cm= 24cm
 - (b) Perimeter of triangle: 8.6cm + 6.5cm + 5.3cm
 - = 20.4 cm
 - (c) Perimeter of triangle = 7cm + 8.3cm + 9.5cm
 - = 24.8 cm

- Area of rectangle = Length \times Breadth 2. $= 46 \text{cm} \times 8.5 \text{cm}$
 - $= 391 \text{cm}^2$

- (a) Area of rectnagle = Length \times Breadth 3. 104 sq cm = Length \times 8cm Length = 104sqm \div 8cm Length = 13cm13 8)104 -824 - 24
 - (b) Area of reactnagle = Length \times Breadth 102sq.cm = Length × 8.5cm Length = $\frac{102}{8.5}$ Length = 12cm
- (a) Area of rectangle = Length \times Breadth 4. 288 sq.cm = 16cm × Breadth Breadth = $\frac{288}{2}$

$$\frac{16}{16} = 18 \text{ cm}$$

$$\frac{18}{16} = 18 \text{ cm}$$

$$\frac{18}{16} = 18 \text{ cm}$$

$$\frac{16}{128} = \frac{16}{128}$$

$$\frac{-128}{0} = 0$$

0

(b) Area of rectangle = Length \times Breadth 52 sq.cm = 8cm × Breadth Breadth = $\frac{52}{8}$ Breadth = 6.5cm 6.5 8)52 - 48 40 - 40 0 Length of park: 150m Breadth of park: 100m Perimeter of park: 2[Length + Breadth] = 2[150m + 100m]= 2[250m] = 500mNumber of times Mayank jogged around the park: 5 Total distance covered: Perimeter of park × Number of times Mayank jogged around the park $= 500 \mathrm{m} \times 5$ = 2500 mAnswer: Mayank covered a total distance of 2500m. 6. Carpet A Length: 16m, Bredth 12.5m Area = Length \times Breadth $= 16m \times 12.5m$ $= 200 m^2$ (4) (3) 1 2 . 5 1 6 (1)(1)7 5 0 1 $2 \quad 5 \quad \times$ 2 0 0 0 = 200.0 [1-Decimal place] [1 Decimal place] Carpet B

5.

Length = 15, Breadth = 13.8 Area = Length \times Breadth = 15m \times 13.8m = 207m²

[1 Decimal place]
200m² < 207m²
Carpet A < Carpet B
Answer: Carpet B is bigger than carpet A.

Multiple choice Question

- 1. (b) The sum of its sides
- 2. (a) Circle [As circle is not bounded by line segments]
- **3.** Perimeter of isoscles triangle = Sum of its all sides

$$= 5.7$$
cm $+ 5.7$ cm $+ 6.9$ cm

= 18.3

	(2)			
		5.	7	
		5.	7	
×		6.	9	
	1	8.	3	

(c) 18.3cm

4. Area of rectangle with length 18m and Breadth 8 Length × Breadth = 18m × 8m = 144m²

$$\begin{array}{c|c}
6 \\
1 \\
8 \\
\times \\
1 \\
4 \\
4 \\
\end{array}$$

Area of rectangle with length 12m and Breadth 14m

Length \times Breadth = 12m \times 14m = 168m²

		1	2
×		1	4
		4	8
+	1	2	×
	1	6	8

Area of square with length of each side 13m Side \times Side = 13m \times 13m = 169m² 144m² < 168m² < 169m² (c) A square of length 13m.

Skills Check

Perimeter of rectangle = 24 cm
 2(Length + Breadth) = 24cm
 Length + Breadth = 24 ÷ 2
 Length + Breadth = 12

Length	Breadth
1	11
2	10
3	9
4	8
5	7
6	6

[The sum of length and breadth should be 12] Six rectangles can be made with a perimeter of 24cm.

(1, 11), (2, 10), (3, 9), (4, 8), (5, 7), (6, 6)

2. Area of rectangle = 36sq.cm

Length \times Breadth = 36sq.cm

[The Product of to length and Breadth should be 36 sq.cm]

Length	Breadth
1	36
2	18
3	12
4	9

Four rectangles can be made with an area of 36 sqcm: (1, 36), (2, 18), (3, 12), (4, 9)

Volume and Nets

Exercise 11.1

- 1. (a) Volume of solid = Number of Cubes = 8
 - (b) Volume of solid = Number of Cubes = 7
 - (c) Volume of solid = Number of Cubes = 9
 - (d) Volume of solid = Number of Cubes = 7
 - (e) Volume of solid = Number of Cubes = 8
 - (f) Volume of solid = Number of Cubes = 24
- (a) Volume of solid = Number of Cubes each measuring lcu.cm
 - = 12 cu.cm

11

- (b) Volume of solid = Number of cubes each measuring 13cu.cm
- (c) Volume of solid = Number of cubes each measuring 11cu.cm
- (d) Volume of solid = Number of cubes each measuring 7cu.cm
- (e) Volume of solid = Number of cubes each measuring 12cu.cm
- (f) Volume of solid = Number of cubes each measuring 9cu.cm

Exercise 11.2

1. (a)
$$l = 12 \text{ cm}, b = 7 \text{ cm}, h = 6 \text{ cm}$$

 $V = l \times b \times h$
 $V = (12 \times 7 \times 6)$
 $V = 504 \text{ cm}^3$
(b) $l = 12.5 \text{ m}, b = 7.8 \text{ m}, h = 4.5 \text{ cm}$
 $V = l \times b \times h$
 $V = (12.5 \times 7.8 \times 4.5)$
 $V = 438.7 \text{ cm}^3$
(c) $l = 4\frac{1}{2} \text{ m}, b = 2\frac{1}{2}, h = 1\frac{1}{2} \text{ m}$
 $l = \frac{2 \times 4 + 1}{2}, b = \frac{2 \times 2 + 1}{2}, h = \frac{2 \times 1 + 1}{2}$
 $l = \frac{8 + 1}{2}, b = \frac{4 + 1}{2}, h = \frac{2 + 1}{2}$
 $l = \frac{9}{2}, b = \frac{5}{2}, h = \frac{3}{2}$

l = 4.5, b = 2.5, h = 1.5 $V = l \times b \times h$ $V = (4.5 \times 2.5 \times 1.5)m$ $V = 16.875m^3 (3 - Decimal place)$

- **2.** Volume of cube = Side \times Side \times Side
 - (a) Side = 17cm B = (17 × 17 × 17)cm = 4913cm³ (b) Side = 10.5cm V = (10.5 × 10.5 × 10.5)cm = 1157.625cm³ (c) $3\frac{1}{4}m = \frac{4 \times 3 + 1}{4} = \frac{12 + 1}{2}m = \frac{13}{4}m = 3.25m$ V = (3.25 × 3.25 × 3.25)m = 34.328125m³ (d) Side = 1m 5cm [1cm = $\frac{1}{100}m$] = 1m + $\frac{5}{100}$ = 1m + 0.05m = 1.05m Volume = (1.05 × 1.05 × 1.05)m
- 3. Dimensions of brick: 1 = 21.6cm, b = 9.6cm, h = 6.4cm Volume of brick = Volume of couboid $= l \times b \times h = (21.6 \times 9.6 \times 6.4)$ cm = 1327.104cm³
- 4. Dimensions of tank: l = 12.4m, b = 7.8m, h = 6m
 - Amount of water that can be filled in tank = Volume of tank
 - $= l \times b \times h$

$$= (12.4 \times 7.8 \times 6) m$$

 $= 1.157625 \text{m}^3$

$$= 580.32m^3$$

5. Edge of cubical tank = 3.2mVolume of cubical tank = Volume of cube = $(3.2 \times 3.2 \times 3.2)m$ = $32.768m^3$

Dimensions of brick: Length = 25, Breadth = 6. 16cm, Heigth = 7.5cm Volume of brick = Volume of cuboid Volume of brick = $(25 \times 16 \times 7.5)$ cm $= 3000 \text{ cm}^3$ Dimensions of Balcony: Length = 5 cm, Breadth = 3m, Heigth = 80cmLength = $5m = (5 \times 100)cm = 500cm$ [1m = 100cm] Breadth = $3m = (3 \times 100)cm = 300cm$ [1m = 100cm] Volume of Balcony = Volume of cuboid Volume of Balcony = Length \times Breadth \times Height $= (500 \times 300 \times 80)$ cm = 1200000 cm³ Number of bricks required to build the balcony Volume of balcony Volume of brick 12000000 = 4000 bricks 3000 Answer: 4000 bricks are required to build the balcony. Dimension of box: Length = 10cm, Breadth = 7. 6cm, Height = 1.5cm Volume of box = Length \times Breadth \times Height $= (10 \times 6 \times 1.5)$ cm $= 90 \text{ cm}^{3}$ Number of boxes = 12Volume of 12 similar boxes = Volume 1 box \times 12 (90×12) cm³ $= 1080 \text{cm}^3$ Answer: If 12 similar boxes are kept one upon the other then the volume of boxes would be 1080 cm^3 . **Exericse 11.3**

To be done by Students

Exercise 11.4 To be done by Students **Learning Updates** (a) Volume of figure = Number of cubes in 1. the figure $= 10 \, \mathrm{cu}$ (b) Volume of figure = Number of cubes in the figure = 36 cu(c) Volume of figure = Number of cubes in the figure $= 30 \, \mathrm{cu}$ (d) Volume of figure = Number of cubes in the figure $= 45 \, \mathrm{cu}$ (a) Volume of figure = Number of cubes in 2. the figure each measuring 8cm³ Volume of cube = $(2 \times 2 \times 2)$ cm³ $= 8 \text{cm}^3$ $8 \text{cm}^3 \times 30$ $= 240 \text{cm}^3$ (b) Volume of figure = Number of cubes in the figure each measuring 8cm³ 36 cube \times 8 cm³ $= 288 \text{cm}^3$ (c) Volume of figure = Number of cubes in the figure each measuring 8cm³ $20 \text{cube} \times 8 \text{cm}^3$ $= 160 \text{cm}^3$ (d) Volume of figure = Number of cubes in the figure each measuring 8cm³ $17 \text{cube} \times 8 \text{cm}^3$ $= 136 \text{cm}^3$ (a) Volume of cuboid = $1 \times b \times h$ 3. $= (5 \times 3 \times 4)$ cm $= 60 \text{ cm}^3$

Mathematics-5

(b) Volume of Cuboid = $1 \times b \times h$ $= (5 \times 2 \times 3)$ cm $= 30 \text{ cm}^3$ (c) All Dimenstions are equal, hence this solid is a cube. Volume of cube = $(4 \times 4 \times 4)$ cm $= 64 \text{cm}^{3}$ 4. (a) L = 15 cm, B = 6 cm, h = 8.5 cm $V = L \times B \times H$ $V = (15 \times 6 \times 8.5)cm$ $V = 765 cm^3$ (b) 18L = 5cm, B = 2.5cm, H = 1cm $V = L \times B \times H$ $V = (5 \times 2.5 \times 1) cm$ $V = 12.5 cm^3$ (c) Length = 12cm, Breadth = 12, Height = 12Volume = $L \times B \times H$ $= (12 \times 12 \times 12)$ cm $= 1728 \text{cm}^3$ (b) and (d) 5. (a) $4\frac{1}{2}$ cm = $\frac{2 \times 4 + 1}{2}$ cm 6. $=\frac{8+1}{2}$ cm $=\frac{9}{2}$ cm =4.5cm Volume of cube = [Side \times Side \times Side] $= (4.5 \times 4.5 \times 4.5)$ cm $= 91.125 \text{ cm}^3$ (b) 18mm Volume of cube = [Side \times Side \times Side] $(18 \times 18 \times 18)$ mm $= 5832 \text{mm}^3$ (c) 7.2cm Volume of cube = [Side \times Side \times Side] $(7.2 \times 7.2 \times 7.2)$ cm³ = 373.248 cm³ (d) 4cm 5mm $[1mm = \frac{1}{10}cm]$ $45 \text{cm} + \frac{5}{10} \text{cm}$

8.

S.no	Length	Breadth	Height	Volume
(a)	3.5cm	5cm	2m	35 cu m
(b)	5cm	4cm	7cm	140cu. cm
(c)	12cm	5cm	7cm	420 cu. cm
(d)	1200cm	9mm	10mm	1080 cu.cm

(a) Volume =
$$1 \times b \times h$$

 $V = (3.5 \times 5 \times 2)m$
 $V = (3.5 \times 10)m$
 $V = 35m^3$
(b) Height
 $V = 1 \times b \times h$
 $h = \frac{V}{1 \times b}$
 $h = \frac{140}{5 \times 4} = \frac{140}{20} = 7cm$
(c) Breadth
 $V = 1 \times b \times h$
 $b = \frac{V}{1 \times h}$
 $b = \frac{420}{12 \times 7} = \frac{420}{84} = 5cm$
(d) Length
 $V = 1 \times b \times h$
 $1 = \frac{V}{b \times h}$
 $1 = \frac{1080}{0.9 \times 10} = 1200cm$
 $[9mm = \frac{9}{10}cm [1mm = \frac{1}{10}cm] = 0.9cm]$
 $[10mm = \frac{10}{10}cm [1mm = \frac{1}{10}cm] = 1cm]$

Answer Key 113

- 9. Length = 6.5m, Breadth = 24m, Height = 1.5m Volume = Length × Breadth × Height = $(6.5 \times 2.4 \times 1.5)m$ = $23.4m^3$
- 10. Dimensions of Box P = $(10 \times 6 \times 4)$ cm Dimensions of Box Q = $(6 \times 6 \times 7)$ cm Volume of Box Q = $(6 \times 6 \times 7)$ cm = 252cm³ Volume of Box P ($10 \times 6 \times 4$)cm = 240cm³ Volume of Box Q > Volume of Box P (252 > 240) Difference between then = 252 - 240 = 12cm³ Hence, Volume of box Q is Greater than Box P by 12 cu.cm

Multiple choice Questions

 (b) 1cm, as Volume of cube = Side × Side × Side

 $= (1 \times 1 \times 1)$ cm = 1cu.cm

- 2. Volume of cube = Side × Side × Side (Edge = 6cm) = $(6 \times 6 \times 6) = 216$ cm³
- 3. Side of cube = 2cm
 - Volume of cube = Side \times Side \times Side = 8cm³

Number of cubes joinded together = 3

- Volume of cubes joinded together = Number of cubes × Volume of cube
- $= 8 \text{cm}^3 \times 3$
- $= 24 \text{cm}^3$

Answer: (c) 24cm³

- 4. (b) Perimeter
- 5. (c) 1000cu.cm

Skills Check

 Dimension of cuboid: Length = 4, Breadth = 4, Height = 2

Volume of cuboid: $L \times B \times H$

 $= (4 \times 4 \times 2) = 32$ cubes

Volume of soild = Number of cubes

Volume of solid = 20 cubes

Number of more unit cubes to be added = 32 cubes - 20 cubes

= 12 cubes

Answer: 12 more cubes are to be added to make a cuboid of dimensions $4 \times 4 \times 2$

2. 20 cubes

2

Time

Get Started

- **1.** (a) a.m
- (b) p.m
 - (c) a.m
 - (d) p.m
- 2. Time period from 7:00am to 12:00

= 12:00 noon - 7:00 cm

= 5 hours

Now, Time period from 12:00 to 2:00pm

- = 12:00 noon 2:00 pm
- = 2 hours
- Total time for which Tina is in school = 5 hours + 2 hours
- = 7 hours
- \therefore Tina spend 7 hours in school.

Mathematics-5

Exercise 12.1

- 1. (a) 0540 hours
 - Answer: 05:40am

= The number formed by the first two digits from the left of a 24-hours clock time is less than 12, then, it shows the number of hours before noon, and therefore a.m will be use with it.

(b) 0120 hours = 01:20am

The number formed by the first two digits from the left of a 24-hours clock time is less than 12, then, it shows the number of hours before noon, and therefore a.m will be use with it.

- (c) 1229 hours
 - = 12: 29pm

If the number formed by the first 2 digits form the left of a 24-hours clock time is 12, then it is 12pm.

(d) 1640 houses = 4:40 pm

If the number formed by the first two digits from the left of a 24-hours clock time is 13 or more then, the difference between that number and 12 gives the number of hours and pm is to be used with it.

(e) 1525 hours = 3:25pm

If the number formed by the first two digits from the left of a 24-hours clock time is 13 or more then, the difference between that number and 12 gives the number of hours and pm is to be used with it.

(f) 000 hours = 12 mid-night

If the number formed by the first two digits from the left of a 24-hours clock time is 13 or more then, the difference between that number and 12 gives the number of hours and pm is to be used with it.

(g) 1200 hours = 12 noon

If this number formed by the left of a 24-hours clock time is 12, then it is 12 noon.

(h) 2000 hours = 8:00 pm

If the number formed by the first two digits from the left of a 24-hours clock time is 123or more then, the difference between that number and 12 gives the number of hours and pm is to be used with it.

2. (a) 6:05am = 0605 hours

For the time from 1:00 am to 12:59pm, do not change the number. the time is written just without am or pm.

(b) 10.24 am = 1024 hours

For the time from 1:00 am to 12:59pm, do not change the number. the time is written just without am or pm.

(c) 12:06am = 0006 hours

For the time from 12 midnight to 12:29am, subtract 12 hours and the time is written without am.

(d) 12: 15pm = 1215 hours

For the time from 1:00am to 12:59pm, do not change the number. the time is written just without am or pm.

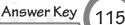
(e) 4: 57am = 0457 hours

For the time from 1:00 am to 12:59pm, do not change the number. the time is written just without am or pm.

(f) 12:00am = 0000 hours

For the time from 12 midnight to 12: 59am, 12 hours will be subtracted and the time will be written without am.

(g) 1:40am = 0140 hours


For the time from 1:00 am to 12:59pm, do not change the number. the time is written just without am or pm.

(h) 9:40pm: 2140 hours

[For the time from 1:00pm to 11:59pm add 12 hours and write the time without pm.]

3. (a) 1620 hours = 4.20 pm

Rajdani express have depaded from kanpur at 1620 hours which when converted into 12 hour clock time is 4:20pm

 \therefore The number formed by the first 2 digit from the left of a 24 hours clock is more than 13 which is 16 difference between that number and 12 gives the number of hours and pm is used with it. Difference between the number and 12 $\therefore = 16 - 12 = 4:20$ pm (b) 0048 = 12:48am The first 2 digits is less than 12 so am is to be used. (c) 1540 = 3:40 pm :. The number formed by the first 2 digit from the left of a 24 hours clock is more than 13 which is 16 difference between that number and 12 gives the number of hours and pm is used with it. Difference between the number and 12 $\therefore 15 - 12 = 3$ 4. = 3:40pm (d) 0800 = 8:00am The first 2 digits is less than 12 so am is to be used. **Exercise 12.2** (a) 8 days 19 hours = 8 days + 19 hours 1. $(:. 1 \text{ day} = 24 \text{ hours}) = (8 \times 24) \text{hours} + 19$ hours = 192 hours + 19 hous = 211 hours 5. (b) 12 days 6 hours = 12 days + 6 hours $= (12 \times 24)$ hours + 6 hours (: 1day = 24) hours) = 288 hours + 6 hours = 294 hours 2. (a) 13 hours 48 minutes = 13 hours + 48 minutes = (13×60) min + 48 $= 780 \min + 48 \min = 828 \min$ (b) 3days 12 hours 35 minutes = 3 days + 12hours + 35 min (Since 1 day = 24 hours) = (3×24) hours + 12 hours + 35 min = (72 + 12) hours + 35 minutes

= 84 hours + 35 minutes $= (84 \times 60)$ minutes + 35 minutes (Since, 1 hours = 60 minutes) = (5040 + 35) minutes = 5075 minutes 3. (a) 12 min 54 second = 1 min = 60 second $= (12 \times 60) \sec + 65 \sec$ = 720 sec + 54 sec= 774 sec(b) 3 hours 25 min 16 sec = 3 hours + 25 min + 16 sec $= (3 \times 60) \min + 25 \min + 16 \sec 60)$ $= (180 \min + 25 \min) + 16 \sec$ $= (180 \min + 25\min) + 16 \sec$ $= 205 \text{min} + 16 \text{sec} (205 \times 60) \text{sec} + 16 \text{sec}$ $= 12300 \sec + 16 \sec = 12316 \sec$ (a) 10 years = 1 year = 12 months $= (10 \times 12)$ months = 120 months (b) 5 years 10 months = 1 year = 12 month $= (5 \times 12) \text{ month} + 10 \text{ months}$ = 60 months + 10 months= 70 months (c) 12 year 7 months = 1 year = 12 months $= (12 \times 12)$ month + 7 months = 144 months + 7 months = 151 months(a) 6 weeks 5 days = 1 week = 7 days $= (6 \times 7) \text{ days} + 5 \text{ days} = 42 \text{ days} + 5 \text{ days}$ = 47 days(b) 9 weeks 4 days = 1 week = 7 days $= (9 \times 7)$ days + 4 days = 63 days + 4 days= 67 days(c) 42 weeks 1 day = 1 week = 7 days $= (42 \times 7) \text{ days} + 1 \text{ day}$ = 294 days + 1 day = 295 days(d) 3years = 1 year = 365 days So, (3×365) days = 1095 days

Mathematics-5

- (a) 138 minutes = 60 minutes = 1 hour6. So, 138 min = $(138 \div 60)$ hours Quotient = 2Remainder = 18Thus, 138 minutes = 2 hours and 18minutes (b) 462 minutes = 60 minutes = 1 hour So, $462 \text{ min} = (462 \div 60) \text{ hours}$ Quotient = 7Remainder = 42Thus, 462 minutes = 7 hours and 42 minutes(c) 1023 minutes = 60 minutes = 1 hourSo, 1023 minutes = $(1023 \div 60)$ hours Quotient = 17Remainder = 3Thus, 1023 minutes = 17 hours and 3 minutes (d) 2006 minutes = 60 minutes = 1 hours So, 2006 minutes = $(2006 \div 60)$ hours Quotient = 33 Remainder = 26Thus, 2006 minutes = 33 hours and 26 minutes(a) 1414 seconds = 1 minute = 60 seconds 7. So, 1414 seconds = $(1414 \div 60)$ minutes Ouotient = 23Remainder = 34Thus, 1414 second = 23 minutes and 34 seconds. (b) 3869 seconds = 1 minute = 60 seconds So, $3869 \text{ seconds} = (3869 \div 60) \text{ minutes}$ Quotient = 64Remainder = 29Thus, 3869 seconds = 64 minutes and 29 seconds. 8. (a) 75 hours = 1 day = 24 hours So, 75 hours = $(75 \div 24)$ days Quotient = 3Remainder = 3Thus, 75 hours = 3 days 3 hours (b) 735 hours: 1 day = 24 hoursSo, 735 hours = $(735 \div 24)$ days Quotient = 30Remainder = 15Thus, 735 hours = 30 days and 15 hours
- (c) 539 hours = 1 day = 24 hours
 So, 539 hours = (539 ÷ 24) days
 Quotient = 22, Remainder = 11
 Thus, 539 hours = 22 days and 11 hours.
- (d) 1018 hours = 1 day = 24 hours
 So, 1018 hours = (1018 ÷ 24) days
 Quotient = 42, Remainder = 10
 Thus, 1018 hours = 42 days and 10 hours.
- 9. (a) 230 days into weeks

1 week = 7 days
230 days =
$$\frac{230}{7}$$
 weeks
 7 32
 7 230
 -21
 20
 14
 6

Quotient = 32, Remainder = 6 Thus, 230 days = 32 weeks and 6 days (b) 341 days 1 week = 7 days 341 days = $\frac{341}{7}$ weeks 48 $7\overline{\smash{\big)}\ 341}$ $-28\sqrt{}$ $\overline{}\ 61$ 56 $\overline{}\ 6$ Quotient = 48 Remainder = 7 Thus, 341 days = 48 weeks and 5 days

Exercisse 12.3

- (a) 5 days 32 hours = 1 day = 24 hours
 So, 5 days 32 hours = 5 days + (24 hours + 8 hours)
 = 5 days + 1 day + 8 hours
 - = 6 days + 8 hours = 6 days and 8 hours.

Answer Key

117

Days	s l	h
	1	
2	1	7
+ 3	1	5
5	3	2

(b)	W	eeks	Days	
			1	
		5	0	4
	+	4	0	6
		9	1	0

9 weeks 10 days = 1 week = 7 days so, 9 weeks 10 days = 9 weeks + [7 days]+ 3 days]

= 9 weeks + 1 week + 3 days

= 10 weeks + 3 days = 10 weeks and 3days

(c)	h		m	in
	9		3	2
	+	6	2	6
	1	5	5	8

= 15 hours and 58 minutes

	h		m	in
	1	3		
	\mathcal{X}	X	6	0
	\mathscr{X}	Å	ø	ø
_	0	8	4	0
	1	5	2	0

[1 hour = 60 minutes]

= 15 hours 20 minutes

(b) [1 Week = 7 days]Weeks Days 4 10 5 X 3 5 5 1 = 1 week and 5 days (c) h min 3 10 8 XØ 7 2 5 1 1 5 = 1 hour and 15 minutes (d) Days h 1 10 4 2 0 2 2 1 8 2 0 = 2 days 8 hours (e) Years Months 1 9 1 2 2 1 N 0 9 1 5 0 4 0 3 = 4 years and 3 months (f) min S 3 10 8 1 X X

> 3 $= 3 \min \text{ and } 7 \sec 2$

7

0

5 3 3

1

3. (a) 6:30pm

= 18 hours and 30 minutes 18 h 30 min + 4 h 50 min

h			m	in
	1 8		3	0
+		4	5	0
	2	2	8	0

- 22 h 80 min [1 hour = 60 min]
- = 22h + [60 + 20] min = 22 h + 1 h + 20 min
- = 23 h + 20 min = 23h 20 min = 11:20 pm
- (b) 3:15pm = 15 hours and 15 minutes

	h			in
	6			
	1	5	1	5
+	0	6	3	0
	2	1	4	5

15h 15 min + 6h 30 min

- = 21 h 45 min
- = 9h 45 min
- **4.** (a) 2:30pm = 14 hours 30 min

	h		n	nin
	1	4	3	0
_	0	3	0	0
	1	1	3	0

14h 30min – 3 hours = 11h 30min = 11:30am

(b) 4:15pm = 16 hours 15min

h		m	in
1	5	7	5
X	К	X	\$
_	6	2	5
	9	5	0

[∴ 1 hour = 60 minutes] 16h 15min – 6h 25min = 9h 50min = 9:50am 5. $8:10am = 8h \ 10min$

h		m	in
1	9	7	0
X	Ń	X	Ń
_	6	2	5
1	2	4	5

8:10pm = 20:10pm

[1 hour = 60 minutes]

12 hours and 45 minutes

- 6 (a) Starting time of school: 8:45am = 8 hours 45 minutes
 - Closing time of school: 2:30pm = 14 hours 30 minutes
 - Working hours of the school: Closing time opening time

	h		m	in
			8	10
	0	13	9	ø
	\mathcal{X}	¥	X	ø
_	0	8	4	5
		5	4	5

= 14h 30min – 8h 45min Answer: Working hours of her school is 5 hours 45 minutes

(b) Arrival of train: Monday at 4:40pmDeparture of train: Thursday at 12:30pm

Duration from 4:40pm to midnight

= 7:20 hours

Duration from midnight tuesday to midnight Wednesday = 24 hours

Duration from midnight wednesday to 12:30pm on thursday = 12:30 hours

Total duration of the Journey of train

= (7:20 + 24 + 24 + 12:30) hours

= 67:50 hours [1 day = 24 hours]

67 hours 50 min = $(67 \div 24)$ days + 50 min

Answer Key 119

Quotient = 2 Remainder = 19Thus, 6750 hours = 2 days 19 hours and 50 minutes **Answer:** The total duration of the jouney was 2 days 19 hours and 50 minutes. (c) Joining date of company: 8 August 2012 Deaparture date of company: 3 Janurary 2021 Durartion from 8 August 2012 to 8 August 2020 = 8 years Duration from 8 August 2021 to 8 December 2021: 4 months Duration for 8 December 2021 to 3 January 2021: 26 days Total Duration from 8 August 2012 to 3 January 2021: 8 years + 4 months + 27days [Including last date too i.e 3 Jan 2021] = 8 years 4 months and 27 days Answer: Manoj worked 8 years 4 months and 27 days for the company. (d) Starting date of winter vaction: 5 December 2020 Ending date of winter vaction: 12 february 2021 Total number of days schools were closed: Days between 5 December 2020 and 12 february 2021 Days between 5 December 2020 to 5 January 2021: 31 days/1 month Days between 5 January 2021 to 5 February 2021: 31 days/ 1months Days between 5 January 2021 to 12 February 2021: 6 days Days between 5 December 2021 to 12 February 2021: 31 days + 31 days + 6 days = 68 daysAnswer: For 68 days the school was closed (e) Kanav Started teaching at the age of : 22 years 7 months

Kanav's current age: 50 years 2 month

Mathematics-5

120

Duration of Kanav's teaching journey: Duration between 22 years 7 months and 50 years 2 months Duration between 22 years 7 months and 49 years 7 months = 27 years Duration between 49 years 7 months and 50 years: 5 months Total duration: 27 years + 5 months + 2months = 27 years + 7 months = 27 years 7 months Answer: Kanav is teaching for 27 years and 7 months. (f) Birth date of Sohail: 7 April 2018 Birth date of Soha: 2 March 2021 7 April 2018 < 2 March 2021 Thus, Sohail is younger than Soha. Difference between Soha and Sohail's age: Difference between 2 March 2021 and 7 April 2018 Duration between 7 April 2018 to 7 April 2020 = 2 year Duration between 7 April 2020 to 7 February 2021: 10 months Duration between 7 february 2021 to 28 february 2021 = 21 days Duration between 28 february 2021 to 3 March 2021: 2 days Total duration betweenn 7 April 2018 to 3 March 2021: 2 years + 10 months + 21 days + 2 days= 2 years 10 month and 23 days Answer: Soha is younger than Sohail by 2 years 10 months and 23 days

Learning Updates

(a) 10:35am = 10 hours and 35 minutes
 3h 35 min + 10 h 35 min

-	11	55	11111	1 '	10	1
		h		m	in	
			3	3	5	
	+	1	0	3	5	
		1	3	7	0	

- = 13h 70min [1h = 60min]
- = 13h + [60min + 10min]
- = 13h + 1h + 10min
- = 14h + 10min
- = 14 hours 10 min = 2:10pm
- (b) 5h 15min + 2350 hours
 - 2350 hours = 11:50 pm
 - = 11h 50min
 - = 11h 50min + 5h 15min

	h		m	in
	1	1	5	0
+		5	1	5
	1	6	6	5

- = 16h 65min [1h = 60min]
- = 16h + [60min + 5 min]
- = 16h + 1h + 5min
- = 17h + 5min
- 17h 5min = 5:05am [After 12:00 midnight am starts = 0505 hours
- (c) 2:10pm = 14:10 hours
 - 2:10pm 1:45min
 - = 12:25pm

		-		
	h		m	in
			6	10
	1	13	\mathcal{X}	ø
	\mathcal{X}	¥	X	ø
_		1	4	5
	1	2	2	5

- (d) $1200 \text{ hours} = 12h \ 20min = 12:20pm$
 - 1220 6:30min
 - = 5:50am or 0550 hours

	h		m	in
		11	8	0
	X	X	2	ø
_		6	3	0
		5	5	0

2.

	12 hour clock	24 hour clock
(a)	7:22pm	0722 hours + 1200
		hours $= 1922$ hours
(b)	0048 + 1200 hours	0048 hours
	= 1248h	
	= 12:48am	
(c)	8:05am	0805 hours
(d)	2125 - 1200 = 0925	2125 hours
	= 9:25am	
(e)	1:20pm	01:20 hours + 1200
		hours $= 1320$ hours
(f)	2318 hours - 1200	2318 hours
	hours $= 1118$ hours	
	= 11:18am	
(g)	12:37am	0037 hours
(h)	1919 hours - 1200 hours	1919 hours
	= 0719 hours	
	= 7:19am	

- 3. Starting date of Book fair: 15 December Number of days Book fair lasted: 22 days Last day of Book fair: 15 December + 22 days
 = 15 December + 18 Day [Including 15 december]
 = 5 January
 1 January + [22 - 18] days = 1 January + 4 days
 - = 5 January

Answer: Last date of Book fair is 6 January.

4. Manjul started studying at: 5:20pm = 17 hours 20 min Duration of study: 1 hour 50 minutes Time he finished studying: 5:20pm + 1 hour 50 minutes $= 17h \ 20min + 1h \ 50min$ = 18h 70min = 18h + [60 + 10]min [1 hour = 60min] = 19h + 10min= 19h 10min = 7:10pm Answer: Manjul finished studying at 7:10pm. Departure time of train: 9:30am 5. Arrival time of train at the next station: 7:45am Duration of the journey: Duration from 9:30am to 12 midnight: 14h 30min Duration from 12 midnight to 7:45am = 7h45min Duration of the journey: 14h 30min + 7h 45min = 21h 75min [1hour = 60min]h min (1) 1 4 3 0 7 5 4 7 5 2 1 = 21h + [60 + 15]min= 22h + 15minAnswer: Duration of the journey is 22h 15min. **6.** (a) h min 11 X 3 8 4 \mathcal{X} XX 2 4 2 4 7 2 1 4

7 4 2 4 2 7 0 24h 70min [1hour = 60min] 24h + [60 + 10]min 25h 10min (c) h min 1 0 3 1 4 2 8 9 8 3 4 3 Answer: 38h 43min **7.** (a) years months (1)8 7 0 8 0 9 5 7 1 15 year 17 month [1 year = 12 months]= 15 year + [12 + 5] months= 16 years + 5 months (b) Days hours (1) (1)

(b)

h

2 0 4 3

min

(1)

= 51 days + 13 h

Answer: 17h 42min

122 Mathematics-5

8. (

()							
(a)	mi	n	se	c			
		13	8	11			
	X	Å	X	X			
	- 0	8	3	2			
		5	5	9			
[1	h = 6	0mir	1]				
_	min 59		-				
(b)				• 4b ~			
(-)	yea	ir	mol	nths			
	4	9	1	5			
	,5	<i>.</i> 0	ø	X			
	- 2	3	0	7			
	2	6	0	8			
=	[1 ye	ar =	12r	non	ths]		
=	26 ye	ears 8	8 m	onth	ıs		
	Mu	ltipl	e C	hoi	ce Q	uest	ions
9:15	= 9 h	ours	15	mir	nutes	+ 12	hou

- utes + 12 hours 1.
 - = 21 hours 15 minutes
 - = 2115 hours
 - (a) 2115 hours
- 2. 2:20pm = 2 hours 20 minutes + 12 hours = 14 hours 20 minutes
 - 14 hours 20 minutes 3:30 hours
 - 14 hours 20 minutes 3 hours 30 minutes
 - = 10h 50 min = 10:50am

h		m	in
1	3	8	0
X	Å	X	ø
_	3	3	0
1	0	5	0

(d) 10:50am

3.	h	m	in	
	8	8	5	
	Ľ	2	\$	
	- 3	4	5	
	5	4	0	
=	= [1 ho	ur =	= 60	min]
=	= 5h 40)mir	ı	
(3	a) 5 ho	ours	40	minutes

Skills Check

Duration of each breaks: 300 seconds 1. Total number of breaks:6 Total duration of breaks: Duration of each \times Number of breaks $= 300 \text{sec} \times 6$ = 1800seconds 1800 seconds = 1 min = 60 seconds $1800 \operatorname{sec} = \left(\frac{1800}{60}\right) \operatorname{min}$ $= 30 \min$

Thus, the breaks lasted for 30min.

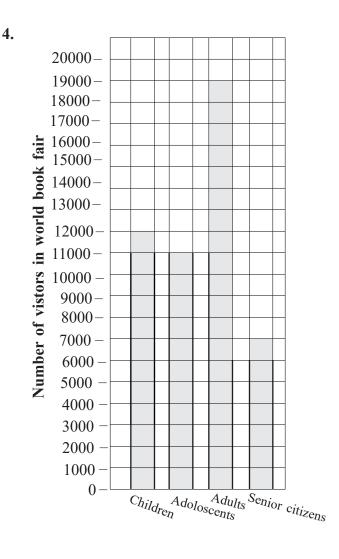
Number of days some flight make to purchase 2. a ticket before flight: 14 days

Date on which Jessica is boarding: June 16th

- Date on which Jessica purchase ticket: 14 days before June 16th
- = 10 days before June 16th [14 days = 10days + 4 days]
- = June 6th
- 4 days befoe June 6th = June 2nd.
- Thus, Jessica purchased her ticket on June 2nd.

Answer Key

123


Get Started

1.	Elephant	3
2.	Monkey	8
3.	Tiger	4
4.	Giraffe	8
5.	Deer	6

Exercise 13.1

- 1. (a) Sale of toys in a week
 - (b) 1 cm = 2 toys
 - (c) 16 toys
 - (d) Friday
 - (e) Tuesday
 - (f) Saloon [Monday + Tuesday + Wednesday + Thursday + Friday + Saturday + Sunday]
 =(12 + 18 + 16 + 10 + 6 + 8 + 16) toys
 = 86 toys
- **2.** (a) ₹3500
 - (b) Food
 - (c) Money spent on [Food, Home, Education, Clothes, Others]
 - = ₹[2500 + 3000 + 3500 + 4000 + 3500] = ₹16500
 - (d) Clothes

Execise 13.2

- 1. (a) Maths
 - (b) Computer
 - (c) 7
 - (d)6 + 7 + 10 = 23

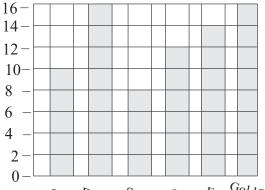
8

(e)
$$10 - 2 =$$

2. (a)

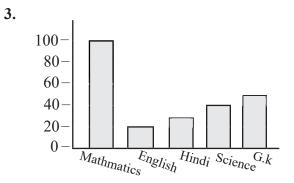
Number	Tally Marks
6	₩. I
8	₩
4	
9	₩
10	₩ ₩
16	₩ ₩ ₩ I

124 Mathematics-5


Number	Tally marks	
14	₩ ₩ Ш	
18	₩₩₩₩Ш	
15	₩ ₩ ₩	
23	₩₩₩₩₩Ш	
12	₩₩∥	
14	1₩. 1₩. III	

3. (a) 10 cars (b) 8 cars (c) white

Learning Updates



Number of Different fish breeds in Aquarium

Fish breads	Number of fishes	Tally marks
Shark	10	₩ ₩
Dolphin	16	₩₩₩₩Ι
Seahorse	8	₩
Catfish	12	₩ ₩
Eel	14	₩ ₩ III
Goldfish	16	₩ ₩ ₩ I

- **2.** (a) Class III
 - (b) 40
 - (c) 40 + 30 + 50 + 40 + 20 = 180
 - (d) 50 20 = 30 students

4.

Weight	Tally marks	Number of students
26		2
28		4
30		2
32		4
36		2
40		3
42		3

Multiple Choice Questions

- 1. (a) data
- 2. (b) bar graph
- 3. (c) line graph
- 4. (a) raw data

Skills Check

- 1. (a) June
 - (b) Jan
 - (c) Temperature in June Temperature in february = $40 16 = 24^{\circ}$ C
 - (d) May, June, July, August and September
 - (e) January, February, March, April, October, November and December.

